On the Determination of the 3D Velocity Field in Terms of Conserved Variables in a Compressible Ocean
Abstract
:1. Introduction
2. Absolute Velocity Field Based On Ideal Fluid Thermocline Theory
2.1. Thermodynamic Form of Ideal Fluid Thermocline Equations
2.2. Available and Background Bernoulli Functions
2.3. Bernoulli and Potential Vorticity (PV) Theorems
2.4. Determination of the Absolute Velocity Field in Terms of Conserved Quantities
2.5. Bernoulli Method
3. Generalisation to Compressible Seawater
3.1. Governing Equations for Compressible Seawater
3.2. Comparison of Ideal and Compressible Forms of Bernoulli Functions and P-Vectors
3.2.1. Conventional Bernoulli Function
3.2.2. Available Bernoulli Function
3.3. Inactive Wind Solutions
3.4. Uniqueness of the Inactive Wind Solution
3.5. Reformulation in Terms of Quantities Independent of Pressure
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Potential Vorticity |
APE | Available Potential Energy |
ACE | Available Compressible Energy |
LRD | Lorenz Reference Density |
ANS | Approximately Neutral Surface |
NSE | Navier–Stokes Equations |
References
- Lee, T.; Awaji, T.; Balmaseda, M.A.; Greiner, E.; Stammer, D. Ocean State Estimation for Climate Research. Oceanography 2009, 22, 160–167. [Google Scholar] [CrossRef]
- Forget, G.; Ferrerira, D.; Liang, X. On the observability of turbulent transport rates by ARGO: Supporting evidence from an inversion experiment. Ocean. Sci. 2015, 11, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Masuda, S.; Osafune, S. Ocean state estimations for synthesis of ocean-mixing observations. J. Oceanogr. 2021, 77, 359–366. [Google Scholar] [CrossRef]
- Wunsch, C.; Ferrari, R. 100 years of the ocean general circulation. A century of progress in atmospheric and related sicences: Celebrating the american meteorological society centennial. Meteorol. Monogr. 2018, 59, 1–32. [Google Scholar] [CrossRef]
- Fomin, L.M. The Dynamic Method in Oceanography; Elsevier Oceanography Series 2; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Olbers, D.J.; Willebrand, J. The level of no motion in an ideal fluid. J. Phys. Oceanogr. 1984, 14, 203–212. [Google Scholar] [CrossRef]
- Schott, F.; Stommel, H. Beta spirals and absolute velocities in different oceans. Deep-Sea Res. 1978, 16, 301–323. [Google Scholar] [CrossRef]
- Wunsch, C. Determining the general circulation of the oceans: A preliminary discussion. Science 1977, 196, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, C. The North Atlantic general circulation west of 50W determined by inverse methods. Rev. Geophys. 1978, 16, 583–620. [Google Scholar] [CrossRef]
- Davis, R.E. On estimating velocity from hydrographic data. J. Geophys. Res. 1978, 83, 5507–5509. [Google Scholar] [CrossRef]
- Behringer, D.W. On computing the absolute geostrophic velocity spiral. J. Mar. Res. 1979, 37, 459–470. [Google Scholar]
- Behringer, D.W.; Stommel, H. The beta spiral in the North Atlantic subtropical gyre. Deep-Sea Res. 1980, 27A, 225–238. [Google Scholar] [CrossRef]
- Killworth, P.D. A Bernoulli inverse method for determining the ocean circulation. J. Phys. Oceanogr. 1986, 16, 2031–2051. [Google Scholar] [CrossRef]
- Bigg, G.R. The beta spiral method. Deep Sea Res. 1985, 32, 465–484. [Google Scholar] [CrossRef]
- Park, Y.H. Determination of the surface geostrophic velocity field from satellite altimetry. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Colin de Verdière, A.; Ollitrault, M. A direct determination of the world ocean barotropic circulation. J. Phys. Oceanogr. 2016, 46, 255–273. [Google Scholar] [CrossRef] [Green Version]
- Colin de Verdière, A.; Meunier, T.; Ollitrault, M. Meridional overturning and heat transport from Argo floats displacements and the planetary geostrophic method (PGM): Application to the subpolar North Atlantic. J. Geophys. Res. Oceans 2019, 124, 5309–6432. [Google Scholar] [CrossRef] [Green Version]
- Griffies, S.M. Fundamentals of Ocean Models; Princeton University Press: Princeton, NJ, USA, 2004; p. 424. [Google Scholar]
- Wunsch, C. The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res. 2011, 69, 417–434. [Google Scholar] [CrossRef] [Green Version]
- Nardelli, B.B. A multi-year time series of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents. Earth Syst. Sci. Data 2020, 12, 1711–1723. [Google Scholar] [CrossRef]
- Sevellec, F.; Garabato, A.C.N.; Brearley, J.A.; Sheen, K.L. Vertical flow in the Southern Ocean estimated from individual moorings. J. Phys. Oceanogr. 2015, 45, 2209–2220. [Google Scholar] [CrossRef] [Green Version]
- Welander, P. The thermocline problem. Philos. Trans. R. Soc. Lond. A. 1971, 270, 415–421. [Google Scholar] [CrossRef]
- Needler, G.T. The absolute velocity as a function of conserved measurable quantities. Prog. Oceanogr. 1985, 14, 421–429. [Google Scholar] [CrossRef]
- Chu, P.C. P-vector method for determining absolute velocity from hydrographic data. Mar. Tech. Soc. J. 1995, 29, 3–14. [Google Scholar]
- Chu, P.C. P-vector spirals and determination of absolute velocities. J. Oceanogr. 2000, 56, 591–599. [Google Scholar] [CrossRef]
- Kurgansky, M.V.; Budillon, G.; Salusti, E. Tracers and potential vorticities in ocean dynamics. J. Phys. Oceanogr. 2002, 32, 3562–3577. [Google Scholar] [CrossRef]
- Kurgansky, M.V. On the determination of the absolute velocity of steady flows of a baroclinic fluid with applications to ocean currents. Dyn. Atms. Oceans 2021, 95, 101234. [Google Scholar] [CrossRef]
- McDougall, T.J. The influence of ocean mixing on the absolute velocity vector. J. Phys. Oceanogr. 1995, 25, 705–725. [Google Scholar] [CrossRef]
- Ochoa, J.; Badan, A.; Sheinbaum, J.; Castro, J. ‘Preferred trajectories’ defined by mass and potential vorticity conservation. Geofis. Int. 2020, 59-3, 195–207. [Google Scholar] [CrossRef]
- Gassmann, A. Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives. Met. Zeit 2014, 23, 467–481. [Google Scholar] [CrossRef]
- Lorenz, E.N. Available potential energy and the maintenance of the general circulation. Tellus 1955, 7, 138–157. [Google Scholar] [CrossRef] [Green Version]
- Young, W.R. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr. 2012, 42, 692–707. [Google Scholar] [CrossRef]
- Crocco, L. Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation. ZAMM Z. Angew. Math. Mech. 1937, 17, 1–7. [Google Scholar] [CrossRef]
- Vazsonyi, A. On rotational gas flows. Quart. Appl. Math. 1945, 3, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Tailleux, R. Available potential energy density for a multicomponent Boussinesq fluid with a nonlinear equation of state. J. Fluid Mech. 2013, 735, 499–518. [Google Scholar] [CrossRef] [Green Version]
- Saenz, J.A.; Tailleux, R.; Butler, E.D.; Hughes, G.O.; Oliver, K.I.C. Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr. 2015, 45, 1242–1257. [Google Scholar] [CrossRef] [Green Version]
- Tailleux, R. Local available energetics of multicomponent compressible stratified fluids. J. Fluid Mech. 2018, 842. [Google Scholar] [CrossRef] [Green Version]
- Holliday, D.; McIntyre, M.E. On potential energy density in an incompressible, stratified fluid. J. Fluid Mech. 1981, 107, 221–225. [Google Scholar] [CrossRef]
- Andrews, D.G. A note on potential energy density in a stratified compressible fluid. J. Fluid Mech. 1981, 107, 227–236. [Google Scholar] [CrossRef]
- Nycander, J. Energy conversion, mixing energy, and neutral surfaces with a nonlinear equation of state. J. Phys. Oceanogr. 2011, 41, 28–41. [Google Scholar] [CrossRef]
- Schär, C. A generalization of Bernoulli’s theorem. J. Atm. Sci. 1993, 50, 1437–1443. [Google Scholar] [CrossRef]
- Muller, P. Ertel’s potential vorticty theorem in physical oceanography. Rev. Geophys. 1995, 33, 67–97. [Google Scholar] [CrossRef]
- Schubert, W.; Ruprecht, E.; Hertenstein, R.; Ferreira, R.N.; Taft, R.; Rozoff, C.; Ciesielski, P.; Kuo, H.C. English translations of twenty-one of Ertel’s papers on geophysical fluid dynamics. Meteo. Zeitschrift 2004, 13, 527–576. [Google Scholar] [CrossRef] [Green Version]
- Killworth, P.D. A note on velocity determination from hydrographic data. J. Geophys. Res. 1979, 84, 5093–5094. [Google Scholar] [CrossRef]
- Killworth, P.D. On determination of absolute velocities and density gradients in the ocean from a single hydrostatic section. Deep-Sea Res. 1980, 27A, 901–929. [Google Scholar] [CrossRef]
- Gouretski, V.V.; Koltermann, K.P. WOCE global hydrographic climatology. Berichte Bundesamtes Seeshifffahrt Hydrogr. Tech. Rep. 2004, 35, 49. [Google Scholar]
- Tailleux, R. Spiciness theory revisited, with new views on neutral density, orthogonality and passiveness. Ocean. Sci. 2021, 17, 203–219. [Google Scholar] [CrossRef]
- McDougall, T.J. Neutral surfaces. J. Phys. Oceanogr. 1987, 17, 1950–1964. [Google Scholar] [CrossRef]
- Tailleux, R.; Wolf, G. On the links between thermobaricity, available potential energy, neutral directions, buoyancy forces, potential vorticity, and lateral stirring in the Ocean. J. Phys. Oceanogr. 2023. submitted. [Google Scholar] [CrossRef]
- Ertel, H. Ein neuer hydrodynamisher Wirbelsatz. Meteo. Z. 1942, 59, 277–281. [Google Scholar]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2006; p. 745. [Google Scholar]
- Tailleux, R. Generalized patched potential density and thermodynamic neutral density: Two new physically based quasi-neutral density variables for ocean water masses analyses and circulation studies. J. Phys. Oceanogr. 2016, 46, 3571–3584. [Google Scholar] [CrossRef]
- Jackett, D.R.; McDougall, T.J. A neutral density variable for the World’s oceans. J. Phys. Oceanogr. 1997, 27, 237–263. [Google Scholar] [CrossRef]
Quantity | Ideal | Compressible |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tailleux, R. On the Determination of the 3D Velocity Field in Terms of Conserved Variables in a Compressible Ocean. Fluids 2023, 8, 94. https://doi.org/10.3390/fluids8030094
Tailleux R. On the Determination of the 3D Velocity Field in Terms of Conserved Variables in a Compressible Ocean. Fluids. 2023; 8(3):94. https://doi.org/10.3390/fluids8030094
Chicago/Turabian StyleTailleux, Rémi. 2023. "On the Determination of the 3D Velocity Field in Terms of Conserved Variables in a Compressible Ocean" Fluids 8, no. 3: 94. https://doi.org/10.3390/fluids8030094
APA StyleTailleux, R. (2023). On the Determination of the 3D Velocity Field in Terms of Conserved Variables in a Compressible Ocean. Fluids, 8(3), 94. https://doi.org/10.3390/fluids8030094