Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions
Abstract
:1. Introduction
2. Preparation and Characterization of Hybrid Nanofluids
3. Performance of PHE with Hybrid Nanofluid
4. Uncertainty Study
5. Results and Discussion
5.1. Empirical Relation for Thermal Conductivity
5.2. Empirical Relation for Effective Viscosity
5.3. Experimental Results
6. Conclusions
- The Al2O3-TiO2/water-based hybrid nanofluids performed better than DI water. However, as the concentration of TiO2 particles in the solution increased, the heat transfer coefficient and the heat transfer rate decreased. An improvement of 16.9% in heat transfer coefficient, 16.9% in Nusselt number, and 3.44% in heat transfer rate were observed with 0.1% volume concentration of Al2O3/water nanofluid;
- Pressure drop reduces with inlet temperature. A total of 0.61% enhancement was observed in the pump work for 0.1 v% TiO2-water nanofluid;
- The Prandtl number was observed to be highest for TiO2-water nanofluid with an enhancement of 2.3%;
- An increase in the inlet temperature results in a reduction in the performance index, whereas the use of hybrid nanofluids leads to its improvement. The alumina nanofluid showed an enhancement of 3.41% in the performance index;
- The use of hybrid nanofluids as coolants in plate heat exchangers improved their performance. Among the studied fluids, the alumina nanofluid performed better in most cases.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rostami, S.; Shahsavar, A.; Kefayati, G.; Shahsavar Goldanlou, A. Energy and Exergy Analysis of Using Turbulator in a Parabolic Trough Solar Collector Filled with Mesoporous Silica Modified with Copper Nanoparticles Hybrid Nanofluid. Energies 2020, 13, 2946. [Google Scholar] [CrossRef]
- Ejaz, A.; Babar, H.; Ali, H.M.; Jamil, F.; Janjua, M.M.; Fattah, I.M.R.; Said, Z.; Li, C. Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 2021, 46, 101199. [Google Scholar] [CrossRef]
- Mofijur, M.; Siddiki, S.Y.A.; Shuvho, M.B.A.; Djavanroodi, F.; Fattah, I.M.R.; Ong, H.C.; Chowdhury, M.A.; Mahlia, T.M.I. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources-A mini-review. Chemosphere 2021, 270, 128642. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Razzaq, L.; Mujtaba, M.A.; Soudagar, M.E.M.; Ahmed, W.; Fayaz, H.; Bashir, S.; Fattah, I.M.R.; Ong, H.C.; Shahapurkar, K.; Afzal, A.; et al. Engine performance and emission characteristics of palm biodiesel blends with graphene oxide nanoplatelets and dimethyl carbonate additives. J. Environ. Manag. 2021, 282, 111917. [Google Scholar] [CrossRef]
- Das, P.K. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 2017, 240, 420–446. [Google Scholar] [CrossRef]
- Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew. Sustain. Energy Rev. 2016, 53, 1046–1058. [Google Scholar] [CrossRef]
- Chen, T.; Kim, J.; Cho, H. Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid. Int. J. Refrig. 2014, 48, 233–244. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
- Sözen, A.; Özbaş, E.; Menlik, T.; Çakır, M.T.; Gürü, M.; Boran, K. Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study. Int. J. Refrig. 2014, 44, 73–80. [Google Scholar] [CrossRef]
- Buschmann, M.H.; Franzke, U. Improvement of thermosyphon performance by employing nanofluid. Int. J. Refrig. 2014, 40, 416–428. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transf. 2003, 125, 567–574. [Google Scholar] [CrossRef]
- Oh, D.-W.; Jain, A.; Eaton, J.K.; Goodson, K.E.; Lee, J.S. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int. J. Heat Fluid Flow 2008, 29, 1456–1461. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.V.; Sprunt, S.; Lopatina, L.M.; Selinger, J.V. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys. Rev. E 2007, 76, 061203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977, 83, 97–117. [Google Scholar] [CrossRef]
- Berger Bioucas, F.E.; Rausch, M.H.; Schmidt, J.; Bück, A.; Koller, T.M.; Fröba, A.P. Effective Thermal Conductivity of Nanofluids: Measurement and Prediction. Int. J. Thermophys. 2020, 41, 55. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 2010, 34, 210–216. [Google Scholar] [CrossRef]
- Corcione, M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 2011, 52, 789–793. [Google Scholar] [CrossRef]
- Einstein, A. Investigations on the Theory of the Brownian Movement; Fürth, R., Ed.; Courier Corporation: Chelmsford, MA, USA, 1956. [Google Scholar]
- Gonçalves, I.; Souza, R.; Coutinho, G.; Miranda, J.; Moita, A.; Pereira, J.E.; Moreira, A.; Lima, R. Thermal Conductivity of Nanofluids: A Review on Prediction Models, Controversies and Challenges. Appl. Sci. 2021, 11, 2525. [Google Scholar] [CrossRef]
- Kaplan, M.; Özdinç Çarpınlıoğlu, M. Proposed new equations for calculation of thermophysical properties of nanofluids. Int. Adv. Res. Eng. J. 2022, 5, 142–151. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Saidur, R. A reliable model to estimate the effective thermal conductivity of nanofluids. Heat Mass Transf. 2019, 55, 397–411. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, S.; Kumar, S.; Dilbaghi, N.; Said, Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J. Clean. Prod. 2018, 190, 169–192. [Google Scholar] [CrossRef]
- Sundar, L.S.; Sharma, K.V.; Singh, M.K.; Sousa, A.C.M. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—A review. Renew. Sustain. Energy Rev. 2017, 68, 185–198. [Google Scholar] [CrossRef]
- Qi, C.; Wan, Y.L.; Wang, G.Q.; Han, D.T. Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO2-water nanofluids. Indian J. Phys. 2018, 92, 461–478. [Google Scholar] [CrossRef]
- Das, P.K.; Mallik, A.K.; Ganguly, R.; Santra, A.K. Synthesis and characterization of TiO2–water nanofluids with different surfactants. Int. Commun. Heat Mass Transf. 2016, 75, 341–348. [Google Scholar] [CrossRef]
- Alkasmoul, F.S.; Al-Asadi, M.T.; Myers, T.G.; Thompson, H.M.; Wilson, M.C.T. A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling. Int. J. Heat Mass Transf. 2018, 126, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Garud, K.S.; Lee, M.-Y. Numerical Investigations on Heat Transfer Characteristics of Single Particle and Hybrid Nanofluids in Uniformly Heated Tube. Symmetry 2021, 13, 876. [Google Scholar] [CrossRef]
- Javadi, H.; Urchueguia, J.F.; Mousavi Ajarostaghi, S.S.; Badenes, B. Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger. Energies 2021, 14, 2892. [Google Scholar] [CrossRef]
- Khaleduzzaman, S.S.; Saidur, R.; Mahbubul, I.M.; Ward, T.A.; Sohel, M.R.; Shahrul, I.M.; Selvaraj, J.; Rahman, M.M. Energy, Exergy, and Friction Factor Analysis of Nanofluid as a Coolant for Electronics. Ind. Eng. Chem. Res. 2014, 53, 10512–10518. [Google Scholar] [CrossRef]
- Khetib, Y.; Abo-Dief, H.M.; Alanazi, A.K.; Said, Z.; Memon, S.; Bhattacharyya, S.; Sharifpur, M. The Influence of Forced Convective Heat Transfer on Hybrid Nanofluid Flow in a Heat Exchanger with Elliptical Corrugated Tubes: Numerical Analyses and Optimization. Appl. Sci. 2022, 12, 2780. [Google Scholar] [CrossRef]
- Senthilkumar, A.P.; Karthikeyan, P.; Janaki, S.; Reddy, E.P.; Rahman, Z.W.; Raajasimman, G. Effectiveness study on Al2O3-TiO2 nanofluid heat exchanger. Int. J. Eng. Robot Technol. 2016, 3, 73–81. [Google Scholar]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf. 2018, 116, 1143–1152. [Google Scholar] [CrossRef]
- Charab, A.A.; Movahedirad, S.; Norouzbeigi, R. Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation. Appl. Therm. Eng. 2017, 119, 42–51. [Google Scholar] [CrossRef]
- Garud, K.S.; Hwang, S.-G.; Lim, T.-K.; Kim, N.; Lee, M.-Y. First and Second Law Thermodynamic Analyses of Hybrid Nanofluid with Different Particle Shapes in a Microplate Heat Exchanger. Symmetry 2021, 13, 1466. [Google Scholar] [CrossRef]
- Elias, M.M.; Shahrul, I.M.; Mahbubul, I.M.; Saidur, R.; Rahim, N.A. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int. J. Heat Mass Transf. 2014, 70, 289–297. [Google Scholar] [CrossRef]
- Chougule, S.S.; Sahu, S.K. Model of heat conduction in hybrid nanofluid. In Proceedings of the 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN), Tirunelveli, India, 25–26 March 2013; pp. 337–341. [Google Scholar]
- Esfahani, N.N.; Toghraie, D.; Afrand, M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study. Powder Technol. 2018, 323, 367–373. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Abbasian Arani, A.A.; Rezaie, M.; Yan, W.-M.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Saedodin, S.; Biglari, M.; Rostamian, H. Experimental investigation of thermal conductivity of CNTs-Al2O3/water: A statistical approach. Int. Commun. Heat Mass Transf. 2015, 69, 29–33. [Google Scholar] [CrossRef]
- Takabi, B.; Salehi, S. Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid. Adv. Mech. Eng. 2014, 6, 147059. [Google Scholar] [CrossRef]
- Zadkhast, M.; Toghraie, D.; Karimipour, A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J. Therm. Anal. Calorim. 2017, 129, 859–867. [Google Scholar] [CrossRef]
- Afrand, M.; Nazari Najafabadi, K.; Akbari, M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl. Therm. Eng. 2016, 102, 45–54. [Google Scholar] [CrossRef]
- Asadi, A.; Asadi, M.; Rezaei, M.; Siahmargoi, M.; Asadi, F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. Int. Commun. Heat Mass Transf. 2016, 78, 48–53. [Google Scholar] [CrossRef]
- Dardan, E.; Afrand, M.; Meghdadi Isfahani, A.H. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl. Therm. Eng. 2016, 109, 524–534. [Google Scholar] [CrossRef]
- Soltani, O.; Akbari, M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 564–570. [Google Scholar] [CrossRef]
- Bhattad, A.; Sarkar, J.; Ghosh, P. Energetic and Exergetic Performances of Plate Heat Exchanger Using Brine-Based Hybrid Nanofluid for Milk Chilling Application. Heat Transf. Eng. 2020, 41, 522–535. [Google Scholar] [CrossRef]
- Bhattad, A.; Sarkar, J.; Ghosh, P. Heat transfer characteristics of plate heat exchanger using hybrid nanofluids: Effect of nanoparticle mixture ratio. Heat Mass Transf. 2020, 56, 2457–2472. [Google Scholar] [CrossRef]
- Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int. Commun. Heat Mass Transf. 2018, 97, 92–102. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R. Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. Int. J. Heat Mass Transf. 2018, 118, 617–627. [Google Scholar] [CrossRef]
- Herwig, H. What Exactly is the Nusselt Number in Convective Heat Transfer Problems and are There Alternatives? Entropy 2016, 18, 198. [Google Scholar] [CrossRef] [Green Version]
- Kakaç, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design, 4th ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Tiwari, A.K.; Ghosh, P.; Sarkar, J. Investigation of thermal conductivity and viscosity of Al2O3-water nanofluids. J. Environ. Res. Dev. 2012, 7, 768–777. [Google Scholar]
- Bhattad, A.; Sarkar, J.; Ghosh, P. Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl. Therm. Eng. 2019, 162, 114309. [Google Scholar] [CrossRef]
- Eid, M.R.; Nafe, M.A. Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves Random Complex Media 2022, 32, 1103–1127. [Google Scholar] [CrossRef]
(a) | ||||||
T (K) | (W/m-K) | (kg/m3) | (mPa·S) | (J/kg·K) | ||
283 | 0.5823 | 997.8 | 0.9549 | 4183 | 6.774 | |
288 | 0.5896 | 996.8 | 0.8706 | 4183 | 6.106 | |
293 | 0.5964 | 996.0 | 0.8150 | 4183 | 5.668 | |
298 | 0.6014 | 994.7 | 0.7493 | 4183 | 5.157 | |
(b) | ||||||
T (K) | Al2O3–TiO2–WaterNanofluids | |||||
TiO2(0:5) | Hybrid (1:4) | Hybrid (2:3) | Hybrid (3:2) | Hybrid (4:1) | Al2O3(5:0) | |
(W/m-K) | ||||||
283 | 0.5919 | 0.5921 | 0.5921 | 0.5921 | 0.5922 | 0.5922 |
288 | 0.5979 | 0.5993 | 0.5993 | 0.5994 | 0.5994 | 0.5994 |
293 | 0.6036 | 0.6046 | 0.6046 | 0.6047 | 0.6047 | 0.6047 |
298 | 0.6091 | 0.6100 | 0.6101 | 0.6109 | 0.6109 | 0.6109 |
(kg/m3) | ||||||
283 | 1001.0 | 1000.9 | 1000.9 | 1000.8 | 1000.8 | 1000.7 |
288 | 1000.0 | 999.7 | 999.7 | 999.6 | 999.6 | 999.5 |
293 | 999.0 | 998.8 | 998.7 | 998.7 | 998.7 | 998.6 |
298 | 997.9 | 997.7 | 997.6 | 997.4 | 997.4 | 997.3 |
(mPa·S) | ||||||
283 | 0.9684 | 0.9684 | 0.9684 | 0.9684 | 0.9684 | 0.9684 |
288 | 0.8935 | 0.8786 | 0.8786 | 0.8786 | 0.8786 | 0.8786 |
293 | 0.8275 | 0.8187 | 0.8187 | 0.8187 | 0.8187 | 0.8187 |
298 | 0.7690 | 0.7612 | 0.7612 | 0.7535 | 0.7535 | 0.7535 |
(J/kg·K) | ||||||
283 | 4169 | 4169 | 4169 | 4169 | 4169 | 4169 |
288 | 4169 | 4169 | 4169 | 4169 | 4169 | 4170 |
293 | 4169 | 4169 | 4169 | 4169 | 4169 | 4170 |
298 | 4168 | 4169 | 4169 | 4169 | 4169 | 4170 |
Prandtl Number, Prhnf | ||||||
283 | 6821 | 6819 | 6819 | 6819 | 6817 | 6817 |
288 | 6230 | 6112 | 6112 | 6111 | 6111 | 6112 |
293 | 5715 | 5645 | 5645 | 5644 | 5644 | 5646 |
298 | 5262 | 5202 | 5202 | 5142 | 5142 | 5143 |
Temperature, T (K) | (mPa·s) | |||
---|---|---|---|---|
Al2O3 Nanofluid Model 3 | TiO2 Nanofluid | |||
Test | Equation (3) | Test | Equation (3) | |
283 | 0.9684 | 0.9600 | 0.9684 | 0.9614 |
288 | 0.8786 | 0.8753 | 0.8935 | 0.8766 |
293 | 0.8187 | 0.8194 | 0.8275 | 0.8206 |
298 | 0.7535 | 0.7533 | 0.7690 | 0.7544 |
Concentration, | (mPa·s) | |
---|---|---|
Test [50,53] | Equation (3) | |
0.005 | 0.5467 | 0.5536 |
0.010 | 0.5596 | 0.5706 |
0.015 | 0.5763 | 0.5891 |
0.020 | 0.5973 | 0.6089 |
0.025 | 0.6220 | 0.6304 |
0.030 | 0.6511 | 0.6536 |
0.035 | 0.6839 | 0.6786 |
0.040 | 0.7211 | 0.7058 |
Fluid | (mPa·s) | |||
---|---|---|---|---|
Temperature, T (K) | ||||
283 | 288 | 293 | 298 | |
DI Water | 0.9549 | 0.8706 | 0.8150 | 0.7493 |
TiO2 (0:5) | 0.9707 | 0.8850 | 0.8285 | 0.7617 |
Hybrid (1:4) | 0.9690 | 0.8835 | 0.8271 | 0.7604 |
Hybrid (2:3) | 0.9683 | 0.8828 | 0.8264 | 0.7598 |
Hybrid (3:2) | 0.9679 | 0.8824 | 0.8261 | 0.7595 |
Hybrid (4:1) | 0.9675 | 0.8821 | 0.8258 | 0.7592 |
Al2O3 (5:0) | 0.9673 | 0.8819 | 0.8256 | 0.7590 |
Fluid | Outlet Temperature, Tco (°C) of the Cold Fluid | Outlet Temperature, Tho (°C) of the Hot Fluid | ||||||
---|---|---|---|---|---|---|---|---|
(°C) | (°C) | |||||||
10 | 15 | 20 | 25 | 10 | 15 | 20 | 25 | |
DI water | 23.55 | 26.20 | 28.85 | 30.95 | 21.42 | 23.81 | 26.44 | 28.95 |
TiO2 (0:5) | 23.65 | 26.32 | 29.06 | 31.15 | 21.40 | 23.72 | 26.39 | 28.91 |
Hybrid (1:4) | 23.68 | 26.37 | 29.10 | 31.28 | 21.39 | 23.69 | 26.37 | 28.89 |
Hybrid (2:3) | 23.72 | 26.44 | 29.18 | 31.41 | 21.37 | 23.66 | 26.35 | 28.87 |
Hybrid (3:2) | 23.76 | 26.53 | 29.27 | 31.50 | 21.35 | 23.63 | 26.33 | 28.85 |
Hybrid (4:1) | 23.79 | 26.61 | 29.35 | 31.59 | 21.33 | 23.60 | 26.31 | 28.83 |
Al2O3 (5:0) | 23.82 | 26.69 | 29.43 | 31.68 | 21.31 | 23.59 | 26.30 | 28.82 |
Cp (J/kg·K) | k (W/m·K) | ρ (kg/m3) | μ (mPa·s) | |
---|---|---|---|---|
DI water | 4183 | 0.6077 | 994.7 | 0.7493 |
TiO2 (0:5) | 4169 | 0.6136 | 997.9 | 0.7544 |
Hybrid (1:4) | 4169 | 0.6120 | 997.7 | 0.7538 |
Hybrid (2:3) | 4169 | 0.6114 | 997.6 | 0.7536 |
Hybrid (3:2) | 4169 | 0.6110 | 997.4 | 0.7535 |
Hybrid (4:1) | 4169 | 0.6108 | 997.4 | 0.7534 |
Al2O3 (5:0) | 4170 | 0.6107 | 997.3 | 0.7533 |
Heat Transfer Rate, Q (kW) | Pressure Drop, Δpc (Pa) | |||||||
---|---|---|---|---|---|---|---|---|
283 K | 288 K | 293 K | 298 K | 283 K | 288 K | 293 K | 298 K | |
DI water | 2833.983 | 2342.48 | 1790.978 | 1264.443 | 315.01 | 310.46 | 305.5 | 300.4 |
TiO2 (0:5) | 2845.343 | 2359.654 | 1810.557 | 1281.66 | 316.25 | 311.5 | 307.4 | 302.6 |
Hybrid (1:4) | 2851.596 | 2360.077 | 1812.895 | 1286.066 | 316.16 | 311.31 | 307.21 | 302.42 |
Hybrid (2:3) | 2859.934 | 2372.668 | 1818.571 | 1289.165 | 316 | 311.09 | 307.13 | 302.26 |
Hybrid (3:2) | 2868.272 | 2378.429 | 1832.332 | 1295.925 | 315.9 | 310.89 | 306.78 | 302.1 |
Hybrid (4:1) | 2869.526 | 2390.105 | 1839.008 | 1301.686 | 315.76 | 310.75 | 306.53 | 301.84 |
Al2O3 (5:0) | 2870.779 | 2407.365 | 1848.155 | 1307.78 | 315.64 | 310.64 | 306.38 | 301.61 |
Nusselt number, Nunf | Prandtl number, Prnf | |||||||
DI water | 10.116 | 11.056 | 12.274 | 14.353 | 6775 | 6106 | 5645 | 5143 |
TiO2 (0:5) | 10.192 | 11.351 | 12.683 | 14.997 | 6821 | 6158 | 5715 | 5262 |
Hybrid (1:4) | 10.248 | 11.400 | 12.767 | 15.112 | 6819 | 6116 | 5669 | 5244 |
Hybrid (2:3) | 10.333 | 11.597 | 12.984 | 15.368 | 6819 | 6115 | 5665 | 5225 |
Hybrid (3:2) | 10.418 | 11.763 | 13.350 | 15.760 | 6818 | 6114 | 5661 | 5204 |
Hybrid (4:1) | 10.455 | 11.969 | 13.620 | 16.169 | 6817 | 6113 | 5658 | 5182 |
Al2O3 (5:0) | 10.484 | 12.209 | 13.898 | 16.713 | 6817 | 6111 | 5656 | 5158 |
Heat transfer coefficient, αnf (W/m2.K) | Performance Index, PI | |||||||
DI water | 1217.26 | 1345.69 | 1506.43 | 1780.02 | 549.49 | 454.39 | 347.58 | 245.51 |
TiO2 (0:5) | 1231.13 | 1385.00 | 1562.34 | 1864.27 | 551.72 | 457.67 | 351.31 | 248.80 |
Hybrid (1:4) | 1238.34 | 1394.31 | 1575.24 | 1881.25 | 552.84 | 457.76 | 351.77 | 249.66 |
Hybrid (2:3) | 1248.58 | 1418.40 | 1602.10 | 1913.42 | 554.47 | 460.22 | 352.88 | 250.27 |
Hybrid (3:2) | 1258.94 | 1438.95 | 1647.46 | 1964.82 | 556.09 | 461.34 | 355.56 | 251.58 |
Hybrid (4:1) | 1263.59 | 1464.10 | 1680.88 | 2015.89 | 556.34 | 463.61 | 356.86 | 252.71 |
Al2O3 (5:0) | 1267.07 | 1493.51 | 1715.09 | 2083.64 | 556.59 | 466.97 | 358.64 | 253.90 |
T (K) | Thermal Conductivity (W/m·K) | |||||
---|---|---|---|---|---|---|
Al2O3 Nanofluid | TiO2 Nanofluid | |||||
Test | = 4.4 in Equation (10) | = 8.8 in Equation (10) | Test | = 4.4 in Equation (10) | = 8.8 in Equation (10) | |
283 | 0.5922 | 0.5840 | 0.5858 | 0.5919 | 0.5836 | 0.5850 |
288 | 0.5994 | 0.5917 | 0.5939 | 0.5979 | 0.5912 | 0.5929 |
293 | 0.6047 | 0.5990 | 0.6016 | 0.6029 | 0.5983 | 0.6003 |
298 | 0.6109 | 0.6045 | 0.6077 | 0.6089 | 0.6038 | 0.6061 |
Thermal Conductivity (W/m·K) | Thermal Conductivity (W/m·K) | ||||
---|---|---|---|---|---|
Test [56] | = 8.8 in Equation (10) | Test [56] | = 8.8 in Equation (10) | ||
0.005 | 0.6884 | 0.6953 | 0.035 | 0.8400 | 0.8408 |
0.010 | 0.7232 | 0.7276 | 0.040 | 0.8590 | 0.8593 |
0.015 | 0.7484 | 0.7546 | 0.045 | 0.8779 | 0.8771 |
0.020 | 0.7737 | 0.7787 | 0.050 | 0.8969 | 0.8942 |
0.025 | 0.7990 | 0.8007 | 0.055 | 0.9127 | 0.9107 |
0.030 | 0.8179 | 0.8213 | 0.060 | 0.9285 | 0.9268 |
Fluid | Temperature, T (K) | |||
---|---|---|---|---|
283 | 288 | 293 | 298 | |
DI Water | 0.5896 | 0.5964 | 0.6014 | 0.6077 |
TiO2 (0:5) | 0.5919 | 0.5979 | 0.6029 | 0.6089 |
Hybrid (1:4) | 0.5920 | 0.5983 | 0.6031 | 0.6094 |
Hybrid (2:3) | 0.5921 | 0.5985 | 0.6035 | 0.6098 |
Hybrid (3:2) | 0.5921 | 0.5987 | 0.6039 | 0.6102 |
Hybrid (4:1) | 0.5922 | 0.5992 | 0.6043 | 0.6106 |
Al2O3 (5:0) | 0.5922 | 0.5994 | 0.6047 | 0.6109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattad, A.; Rao, B.N.; Atgur, V.; Veza, I.; Zamri, M.F.M.A.; Fattah, I.M.R. Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions. Fluids 2023, 8, 120. https://doi.org/10.3390/fluids8040120
Bhattad A, Rao BN, Atgur V, Veza I, Zamri MFMA, Fattah IMR. Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions. Fluids. 2023; 8(4):120. https://doi.org/10.3390/fluids8040120
Chicago/Turabian StyleBhattad, Atul, Boggarapu Nageswara Rao, Vinay Atgur, Ibham Veza, Mohd Faiz Muaz Ahmad Zamri, and Islam Md Rizwanul Fattah. 2023. "Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions" Fluids 8, no. 4: 120. https://doi.org/10.3390/fluids8040120
APA StyleBhattad, A., Rao, B. N., Atgur, V., Veza, I., Zamri, M. F. M. A., & Fattah, I. M. R. (2023). Thermal Performance Evaluation of Plate-Type Heat Exchanger with Alumina–Titania Hybrid Suspensions. Fluids, 8(4), 120. https://doi.org/10.3390/fluids8040120