Suitability of Different Blood-Analogous Fluids in Determining the Pump Characteristics of a Ventricular Assist Device
Abstract
:1. Introduction
Fluid | ||||
---|---|---|---|---|
Blood (typical values from literature studies) | ||||
Glycerol water (37.5/63.5%, v/v) |
2. Methods
2.1. Material and Rheological Properties of the Fluids
2.2. Experimental VAD Setup for Determining the Pump Characteristics
2.3. Numerical VAD Setup for Determining the Pump Characteristics
3. Results and Discussion
3.1. Fluid Properties for the Newtonian Blood-Analogous Fluids
3.2. Experimental and Numerical Results for the Newtonian Blood-Analogous Fluids
4. Comparison of the Pump Characteristics between Newtonian & Non-Newtonian Fluids
4.1. Methods for the Non-Newtonian Fluid Analyses
4.2. Results for the Non-Newtonian Fluid Analyses
5. Selection to Find the Most Suitable Blood-Analogous Fluid
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
velocity, | |
diameter, | |
hematocrit, % | |
pressure head, | |
turbulent kinetic energy, | |
impeller torque, | |
rotational speed, | |
pressure, | |
flow rate, | |
radius, | |
pump Reynolds number, | |
rate-of-strain tensor, | |
SUB-, SUPERSCRIPTS AND OPERATORS | |
at the casing (for axial VADs) | |
spatial directions | |
volumetric share | |
mass share | |
increase | |
time-averaged | |
fluctuation | |
circumferential velocity, | |
volume, | |
direction, | |
inner efficiency, | |
temperature, | |
dynamic viscosity, | |
kinematic viscosity, | |
density, | |
ABBREVIATIONS | |
BAF | blood-analogous fluid |
CFD | computational fluid dynamics |
EXP | experiment |
G | glycerol |
LES | large-eddy simulation |
PEG 200 | polyethylene glycol 200 |
PEG 8000 | polyethylene glycol 8000 |
Rel. Dev. | relative deviation |
X | xanthan |
W | water |
References
- Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5, 1–6. [Google Scholar]
- Waage, P.; Kreuter, D.P.; Blome, B. Annual Report—Organ Donation and-Transplantation in Germany; Deutsche Stiftung Organtransplantation. 2021. Available online: https://dso.de/SiteCollectionDocuments/DSO-Jahresbericht%202021.pdf (accessed on 17 January 2023).
- Teuteberg, J.J.; Cleveland, J.C.; Cowger, J.; Higgins, R.S.; Goldstein, D.J.; Keebler, M.; Kirklin, J.K.; Myers, S.L.; Salerno, C.T.; Stehlik, J.; et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: The changing landscape of devices and indications. Ann. Thorac. Surg. 2020, 109, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Gülich, J.F. Centrifugal Pumps; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wu, Z.J.; Gottlieb, R.K.; Burgreen, G.W.; Holmes, J.A.; Borzelleca, D.C.; Kameneva, M.V. Investigation of fluid dynamics within a miniature mixed flow blood pump. Exp. Fluids 2001, 31, 615–629. [Google Scholar] [CrossRef]
- Mizunuma, H.; Nakajima, R. Experimental study on shear stress distributions in a centrifugal blood pump. Artif. Organs 2007, 31, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Throckmorton, A.L.; Untaroiu, A.; Allaire, P.E.; Wood, H.G.; Lim, D.S.; McCulloch, M.; Olsen, D.B. Numerical design and experimental hydraulic testing of an axial flow ventricular assist device for infants and children. ASAIO J. 2007, 53, 754–761. [Google Scholar] [CrossRef]
- Thamsen, B.; Mevert, R.; Lommel, M.; Preikschat, P.; Gaebler, J.; Krabatsch, T.; Kertzscher, U.; Hennig, E.; Affeld, K. A two-stage rotary blood pump design with potentially lower blood trauma: A computational study. Int. J. Artif. Organs 2016, 39, 178–183. [Google Scholar] [CrossRef]
- Boes, S.; Thamsen, B.; Haas, M.; Daners, M.S.; Meboldt, M.; Granegger, M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans. Biomed. Eng. 2018, 66, 1618–1627. [Google Scholar] [CrossRef]
- Strauch, C.; Escher, A.; Wulff, S.; Kertzscher, U.; Zimpfer, D.; Thamsen, P.U.; Granegger, M. Validation of Numerically Pre- dicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood Pump. ASAIO J. 2021, 67, 1148–1158. [Google Scholar]
- Su, B.; Chua, L.P.; Wang, X. Validation of an axial flow blood pump: Computational fluid dynamics results using particle image velocimetry. Artificial Organs. 2012, 36, 359–367. [Google Scholar] [CrossRef]
- Mapley, M.C.; Seah, E.P.; Semenzin, C.; Wu, E.; Pauls, J.P. Analysis of the HeartWare HVAD pump characteristics under pulsatile operation. Biomed. Signal Process. Control 2021, 68, 102754. [Google Scholar] [CrossRef]
- Mann, D.E.; Tarbell, J.M. Flow of non-newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 1990, 27, 711–733. [Google Scholar] [CrossRef]
- Vlastos, G.; Lerche, D.; Koch, B. The superposition of steady on oscillatory shear and its effect on the viscoelasticity of human blood and a blood-like model fluid. Biorheology 1997, 34, 19–36. [Google Scholar] [CrossRef]
- Miller, P. Matching index of refraction using a diethyl phthalate/ethanol solution for in vitro cardiovascular models. Exp. Fluids 2006, 41, 375–381. [Google Scholar] [CrossRef]
- Torner, B.; Konnigk, L.; Wurm, F.H. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device. Int. J. Artif. Organs 2019, 42, 735–747. [Google Scholar] [CrossRef]
- Thamsen, B.; Blümel, B.; Schaller, J.; Paschereit, C.O.; Affeld, K.; Goubergrits, L.; Kertzscher, U. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Artif. Organs 2015, 39, 651–659. [Google Scholar] [CrossRef]
- Torner, B.; Konnigk, L.; Abroug, N.; Wurm, F.-H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. Int. J. Numer. Meth. Biomed. Eng. 2021, 37, e3431. [Google Scholar] [CrossRef]
- Oglat, A.A.; Matjafri, M.Z.; Suardi, N.; Abdelrahman, M.A.; Oqlat, M.A.; Oqlat, A.A. A New Scatter Particle and Mixture Fluid for Preparing Blood Mimicking Fluid for Wall Less Flow Phantom. J. Med. Ultrasound 2018, 26, 134. [Google Scholar] [CrossRef]
- Gonzallez-Tello, P.; Camacho, F.; Biazquez, G. Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol. J. Chem. Eng. Data 1994, 39, 611–614. [Google Scholar] [CrossRef]
- Bhanot, C. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol). J. Chem. Thermodyn. 2012, 45, 137–144. [Google Scholar] [CrossRef]
- Cardoso, A.V.; Camargos, A.O. Geometrical Aspects During Formation of Compact Aggregates of Red Blood Cells. Mater. Res. 2002, 5, 263–268. [Google Scholar] [CrossRef]
- Raymond, A.; Smith, E.R.; Liesegang, J. The physical properties of blood—Forensic considerations. Sci. Justice J. Forensic Sci. Soc. 1996, 36, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Niu, S.; Chen, Z.; Zhang, T.; Griffith, B.P.; Wu, Z.J. Shear-Induced Hemolysis: Species Differences. Artif. Organs 2015, 39, 795–802. [Google Scholar] [CrossRef] [PubMed]
- ASTM F1841-97; Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps. ASTM Internationa: West Conshohocken, PA, USA, 2017.
- Gräf, F.; Finocchiaro, T.; Laumen, M.; Mager, I.; Steinseifer, U. Mock circulation loop to investigate hemolysis in a pulsatile total artificial heart. Artif. Organs 2015, 39, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, S.; Segers, P.; Meyns, B.; Verdonck, P. Hydrodynamic Characterisation of Ventricular Assist Devices. Int. J. Artif. Organs 2001, 24, 470–477. [Google Scholar] [CrossRef]
- Maruyama, T.; Murashige, T.; Sakota, D.; Maruyama, O.; Hijikata, W. Development of an Intelligent Ventricular Assist Device with a Function of Sensorless Thrombus Detection. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4516–4519. [Google Scholar]
- König, C.S.; Clark, C.; Mokhtarzadeh-Dehghan, M.R. Comparison of flow in numerical and physical models of a ventricular assist device using low- and high-viscosity fluids. Proc. Inst. Mech. Eng. 1999, 213, 423–432. [Google Scholar] [CrossRef]
- DIN 9906; Rotodynamic Pumps—Hydraulic Performance Acceptance Test—Grades 1 and 2. 2002, Normenausschuss Maschinenbau (NAM) im DIN Deutsches Institut für Normung e.V. Beuth Verlag GmbH: Berlin, Germany, 2002.
- ANSYS, Inc. ANSYS CFX–Modeling Guide 18.0: Chap, 15.3.2; ANSYS: Canonsburg, PA, USA, 2017. [Google Scholar]
- Merrill, E.W. Rheology of blood. Physiol. Rev. 1969, 49, 863–888. [Google Scholar] [CrossRef]
- Wiegmann, L.; Boës, S.; de Zélicourt, D.; Thamsen, B.; Schmid Daners, M.; Meboldt, M.; Kurtcuoglu, V. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Ann. Biomed. Eng. 2018, 46, 417–428. [Google Scholar] [CrossRef]
- Operating Instructions HAAKE Mars Rheometer, Version 1.9; Thermo Scientific: Waltham, MA, USA, 2010.
- Bundesamt für Gesundheit BAG. 2015. Available online: https://www.bag.admin.ch/dam/bag/de/dokumente/chem/themen-a-z/factsheet-ethylenglykol.pdf.download.pdf/2015-07-20_factsheet_ethylenglykol_de.pdf (accessed on 16 March 2023).
Fluid | Rheological Evaluation | Experimental Evaluation | Numerical Evaluation |
---|---|---|---|
Glycerol water (G-W) | ✓ | ✓ | ✓ |
PEG 200-water (PEG200-W) | ✓ | ✓ | ✓ |
Ethylene glycol-water (EG-W) | ✓ | ✓ | ✓ |
PEG 8000-water (PEG8000-W) | ✓ | ✓ | ✓ |
Fluid | ||||
---|---|---|---|---|
Blood—Reference A [23] | - | 1062 | 4.00 | 3.77 |
G-W | 40.7/59.3 | 1110 () | 4.00 () | 3.60 () |
PEG200-W | 38.0/62.0 | 1060 () | 3.99 () | 3.76 () |
EG-W | 56.0/44.0 | 1072 () | 3.96 () | 3.69 () |
PEG8000-W | 08.0/92.0 | 1012 () | 3.93 () | 3.88 () |
Fluid | Head H (CFD|EXP) [mmHg] | Efficiency ηi (CFD) [%] | Costs per Liter [€/L] | Density ρ [kg⁄m3] | Kin. Viscosity [mm2⁄s] | |
---|---|---|---|---|---|---|
Blood— Reference A [23] | 73.8 | - | 31.8 | - | 1062 | 3.77 |
G-W | 77.3 | 74.6 | 32.0 | 22.90 | 1110 | 3.60 |
EG-W | 74.5 | 71.1 | 31.7 | 14.55 | 1072 | 3.69 |
PEG200-W | 73.6 | 74.9 | 31.6 | 14.81 | 1060 | 3.76 |
PEG8000-W | 69.8 | 67.9 | 31.1 | 04.52 | 1012 | 3.88 |
Fluid | ||
---|---|---|
G-W | 76.0 | 1110 |
PEG8000-W | 68.9 | 1012 |
Rel. Dev. [%] |
Fluid | Ratio of the Newtonian Components [v/v,%] | Xanthan Gum [w/w,%] | ||
---|---|---|---|---|
Blood— Reference A [23] | - | - | 1062 | - |
Blood— Ref. [22] | - | - | - | 3.80 |
G-W-X (non-Newtonian) | 35.0/65.0 | 0.01 | 1093 | 3.70 |
PEG200-W-X (non-Newtonian) | 33.0/67.0 | 0.01 | 1053 | 3.78 |
Fluid | Pressure Head [mmHg] | Efficiency (CFD) [%] | |
---|---|---|---|
EXP | CFD | ||
G-W (Newtonian) | 74.6 | 77.3 | 32.0 |
G-W-X (non-Newtonian) | 74.0 | 76.9 | 32.8 |
PEG 200-W (Newtonian) | 74.9 | 73.6 | 31.6 |
PEG200-W-X (non-Newtonian) | 73.6 | 73.0 | 32.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knüppel, F.; Thomas, I.; Wurm, F.-H.; Torner, B. Suitability of Different Blood-Analogous Fluids in Determining the Pump Characteristics of a Ventricular Assist Device. Fluids 2023, 8, 151. https://doi.org/10.3390/fluids8050151
Knüppel F, Thomas I, Wurm F-H, Torner B. Suitability of Different Blood-Analogous Fluids in Determining the Pump Characteristics of a Ventricular Assist Device. Fluids. 2023; 8(5):151. https://doi.org/10.3390/fluids8050151
Chicago/Turabian StyleKnüppel, Finn, Inga Thomas, Frank-Hendrik Wurm, and Benjamin Torner. 2023. "Suitability of Different Blood-Analogous Fluids in Determining the Pump Characteristics of a Ventricular Assist Device" Fluids 8, no. 5: 151. https://doi.org/10.3390/fluids8050151
APA StyleKnüppel, F., Thomas, I., Wurm, F. -H., & Torner, B. (2023). Suitability of Different Blood-Analogous Fluids in Determining the Pump Characteristics of a Ventricular Assist Device. Fluids, 8(5), 151. https://doi.org/10.3390/fluids8050151