Experimental Investigation and Numerical CFD Assessment of a Thermodynamic Breakup Model for Superheated Sprays with Injection Pressure up to 700 Bar
Abstract
:1. Introduction
2. Research Methodology
2.1. Experimental Equipment and Setup
2.2. Computational Method
- R: drop radius;
- : ambient pressure;
- : nondimensional Sherwood number, function of Reynolds and Schmidt numbers:
- : binary diffusivity coefficient;
- : vapor film temperature (average of the temperatures of the droplet and of the surrounding gas);
- : vapor film specific gas constant;
- : partial vapor pressure of the liquid species;
- : saturation pressure.
- : latent heat of vaporization of the liquid;
- : boiling temperature of the fuel at the specific ambient pressure;
- : droplet temperature;
- : heat transfer empirical coefficient [31].
3. Discussion of the Results
3.1. Validation with Shadowgraph Acquisitions
3.2. Insights about the Flash Boiling Breakup Model
3.3. Details about the Spray Morphology
4. Conclusions
- Subcooled and flash-boiling sprays can be reproduced with no changes the breakup constants by using an effervescent breakup model when superheated conditions are simulated.
- Compared to an aerodynamic breakup model alone, the effervescent breakup model predicts droplets with smaller dimensions. The size distribution resemble a Gaussian distribution while, using Reitz–Diwakar model, the droplets’ diameters range from 40 to 80 .
- The Reitz–Diwakar breakup model alone overestimates spray penetration when the constants used for nonevaporative conditions are used for flash-boiling conditions.
- The effervescent breakup reduces the droplet diameter of about one order of magnitude (catastrophic breakup) at a distance which, depending on the injection pressure, ranges between 5 and 10 mm from the injector tip.
- For the investigated cases, plume-to-plume interaction is significantly promoted by flash-boiling occurrence, but it is not strong enough to cause spray collapse.
- Adopting an elevated values of injection pressures spray-collapse is avoided, and so air/fuel interaction is promoted as well as ambient gas recirculation.
- Switching from nonevaporative to flash-boiling conditions both the turbulent kinetic energy and the dimensions of the vortical structures increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Adaptive Mesh Refinement | |
Computational Fluid Dynamic | |
Discrete Droplet Model | |
Engine Combustion Network | |
Gasoline Direct Injection | |
Homogeneous Relaxation Model | |
Breakup criterion | |
Constant for spray expansion | |
Kelvin–Helmholtz–Rayleigh–Taylor | |
Bubble Mach number | |
n | Number of particles |
Ambient pressure | |
Nominal ambient pressure | |
Liquid saturation pressure | |
Pressure Implicit with splitting of operator | |
Particle Image Velocimetry | |
Initial vapor bubble radius | |
Droplet radius | |
Vapor bubble radius | |
Ambient to saturation pressure ratio | |
Reynolds-Averaged Navier–Stokes | |
Reitz–Diwakar | |
Sauter Mean Diameter | |
Sauter Mean Radius | |
Start Of Injection | |
Stepped Hole Valve Covered Orifice | |
Saturation temperature | |
Liquid temperature | |
Bubble breakup time | |
Magnitude of radial velocity | |
Bubble grow rate | |
Droplet grow rate | |
Volume Of Fluid | |
Bubble Weber number | |
Droplet Weber number | |
Disturbance | |
Initial disturbance | |
Dynamic viscosity | |
Instability grow rate | |
Air–Liquid density ratio | |
Bubble–Liquid density ratio | |
Inner gas density | |
Outer gas density | |
Liquid density | |
Liquid surface tension |
References
- Payri, R.; Salvador, F.J.; Martí-Aldaraví, P.; Vaquerizo, D. ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis. Appl. Therm. Eng. 2017, 112, 304–316. [Google Scholar] [CrossRef]
- Di Ilio, G.; Krastev, V.K.; Falcucci, G. Evaluation of a Scale-Resolving Methodology for the Multidimensional Simulation of GDI Sprays. Energies 2019, 12, 2699. [Google Scholar] [CrossRef]
- Duronio, F.; De Vita, A.; Allocca, L.; Anatone, M. Gasoline direct injection engines—A review of latest technologies and trends. Part 1: Spray breakup process. Fuel 2020, 265, 116948. [Google Scholar] [CrossRef]
- Nocivelli, L.; Sforzo, B.A.; Tekawade, A.; Yan, J.; Powell, C.F.; Chang, W.; Lee, C.F.; Som, S. Analysis of the Spray Numerical Injection Modeling for Gasoline Applications; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Zembi, J.; Mariani, F.; Battistoni, M.; Irimescu, A.; Merola, S. Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine; SAE WCX Digital Summit; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Oh, H.; Hwang, J.; Pickett, L.M.; Han, D. Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors. Fuel 2022, 311, 122569. [Google Scholar] [CrossRef]
- Duronio, F.; De Vita, A.; Montanaro, A.; Villante, C. Gasoline direct injection engines—A review of latest technologies and trends. Part 2. Fuel 2020, 265, 116947. [Google Scholar] [CrossRef]
- Youso, T.; Fujikawa, T.; Yamakawa, M.; Kaminaga, T.; Yamaguchi, K.; Ratnak, S.; Kusaka, J. A Study on Combustion Characteristics of a High Compression Ratio SI Engine with High Pressure Gasoline Injection. In Proceedings of the 14th International Conference on Engines & Vehicles, Beijing, China, 28 July–1 August 2019; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Karrholm, F.P.; Helmantel, A.; Koopmans, L.; Dahlander, P.; Yamaguchi, A. Spray Characterization of Gasoline Direct Injection Sprays Under Fuel Injection Pressures up to 150 MPa with Different Nozzle Geometries. In Proceedings of the International Powertrains, Fuels & Lubricants Meeting, Kyoto, Japan, 26–29 August 2019; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Fatouraie, M.; Medina, M.; Wooldridge, M. High-Speed Imaging Studies of Gasoline Fuel Sprays at Fuel Injection Pressures from 300 to 1500 bar. In Proceedings of the WCX World Congress Experience, Detroit, MI, USA, 10–12 April 2018; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Guo, H.; Li, Y.; Lu, X.; Zhou, Z.; Xu, H.; Wang, Z. Radial expansion of flash boiling jet and its relationship with spray collapse in gasoline direct injection engine. Appl. Therm. Eng. 2019, 146, 515–525. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y.; Zeng, W.; Zhang, G.; Zhang, M. Flash Boiling: Easy and Better Way to Generate Ideal Sprays than the High Injection Pressure. SAE Int. J. Fuels Lubr. 2013, 6, 137–148. [Google Scholar] [CrossRef]
- Sher, E.; Bar-Kohany, T.; Rashkovan, A. Flash-boiling atomization. Prog. Energy Combust. Sci. 2008, 34, 417–439. [Google Scholar] [CrossRef]
- Bar-Kohany, T.; Sher, E. Flash boiling atomization under negative pressure conditions. At. Sprays 2021, 31, 1–8. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Brennen, E. Cavitation and Bubble Dynamics Christopher; California Institute of Technology Pasadena: Pasadena, CA, USA, 1995. [Google Scholar]
- Wang, B.; Mosbach, S.; Schmutzhard, S.; Shuai, S.; Huang, Y.; Kraft, M. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model. Appl. Energy 2016, 163, 154–166. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, M.; Zhang, G.; Zhang, Y.; Cleary, D.J. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 2012, 95, 287–297. [Google Scholar] [CrossRef]
- Chan, Q.N.; Bao, Y.; Kook, S. Effects of injection pressure on the structural transformation of flash-boiling sprays of gasoline and ethanol in a spark-ignition direct-injection (SIDI) engine. Fuel 2014, 130, 228–240. [Google Scholar] [CrossRef]
- Allocca, L.; Montanaro, A.; Meccariello, G. Effects of the Ambient Conditions on the Spray Structure and Evaporation of the ECN Spray G. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 9–11 April 2019; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Migliaccio, M.; Montanaro, A.; Paredi, D.; Lucchini, T.; Allocca, L.; D’Errico, G. CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Duronio, F.; De Vita, A.; Allocca, L.; Montanaro, A.; Ranieri, S.; Villante, C. CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Duronio, F.; Mascio, A.D.; Villante, C.; Anatone, M.; Vita, A.D. ECN Spray G: Coupled Eulerian internal nozzle flow and Lagrangian spray simulation in flash boiling conditions. Int. J. Engine Res. 2023, 24, 14680874221090732. [Google Scholar] [CrossRef]
- Duronio, F.; Montanaro, A.; Ranieri, S.; Allocca, L.; De Vita, A. Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver. In Proceedings of the 15th International Conference on Engines & Vehicles, Napoli, Italy, 12–16 September 2021; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Montanaro, A.; Allocca, L.; Ranieri, S.; Beatrice, C. Computational-Experimental Framework for Realizing a Novel Apparatus for Supercritical Water by Induction Heating. Heat Transf. Eng. 2022, 44, 785–802. [Google Scholar] [CrossRef]
- Duronio, F.; Montanaro, A.; Allocca, L.; Ranieri, S.; De Vita, A. Effects of Thermodynamic Conditions and Nozzle Geometry on the Methane Direct Injection Process in Internal Combustion Engines. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 5–7 April 2022; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Stiesch, G. Modeling Engine Spray and Combustion Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Duronio, F.; Ranieri, S.; Montanaro, A.; Allocca, L.; De Vita, A. ECN Spray G injector: Numerical modelling of flash-boiling breakup and spray collapse. Int. J. Multiph. Flow 2021, 145, 103817. [Google Scholar] [CrossRef]
- Zeng, Y. Modelling of Multicomponent Fuel Vaporization in Internal Combustion Engines. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2000. [Google Scholar]
- Richards, K.; Senecal, P.; Pomraning, E. Converge 3.0; Convergent Science: Madison, WI, USA, 2021. [Google Scholar]
- Price, C.; Hamzehloo, A.; Aleiferis, P.; Richardson, D. Numerical modelling of fuel spray formation and collapse from multi-hole injectors under flash-boiling conditions. Fuel 2018, 22, 518–541. [Google Scholar] [CrossRef]
- Paredi, D.; Lucchini, T.; D’Errico, G.; Onorati, A.; Pickett, L.; Lacey, J. Validation of a comprehensive computational fluid dynamics methodology to predict the direct injection process of gasoline sprays using Spray G experimental data. Int. J. Engine Res. 2020. [Google Scholar] [CrossRef]
- Bilicki, Z.; Kestin, J.; Stuart, J.T. Physical aspects of the relaxation model in two-phase flow. Proc. R. Soc. Lond. Math. Phys. Sci. 1990, 428, 379–397. [Google Scholar]
- Reitz, R. Modeling atomization processes in high-pressure vaporizing sprays. At. Spray Technol. 1987, 3, 309–337. [Google Scholar]
- Faeth, G. Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 1977, 3, 191–224. [Google Scholar] [CrossRef]
- Amsden, A.A.; O’Rourke, P.J.; Butler, T.D. KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays; Los Alamos National Lab.: Los Alamos, NM, USA, 1989. [Google Scholar]
- Price, C.; Hamzehloo, A.; Aleiferis, P.; Richardson, D. An approach to modeling flash-boiling fuel sprays for direct-injection spark-ignition engines. At. Sprays 2016, 26, 1197–1239. [Google Scholar] [CrossRef]
- Senecal, P.K.; Pomraning, E.; Richards, K.J.; Som, S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations. J. Energy Resour. Technol. 2013, 136, 012204. [Google Scholar] [CrossRef]
- Di Angelo, L.; Duronio, F.; De Vita, A.; Di Mascio, A. Cartesian Mesh Generation with Local Refinement for Immersed Boundary Approaches. J. Mar. Sci. Eng. 2021, 9, 572. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid Mech. 1997, 29, 123–160. [Google Scholar] [CrossRef]
Spray shape | Circular |
Nozzle type | VCO (Valve-covered orifice) |
Nozzle shape | Stepped-hole |
Orifice length | 700 |
Orifice diameter | 100 |
L/D ratio | 7 |
Orifice drill angle | / 45 |
Full outer angle | 90 |
Flow rate | 10.55 cc/s @ 100 bar |
Discharge Coeffient | 0.737 @ 400 bar/0.937 @ 700 bar |
Case HP | Case HP-fb | Case vHP | Case vHP-fb | |
---|---|---|---|---|
Injection Pressure [bar] | 400 | 400 | 700 | 700 |
Fuel Temp. [K] | 293 | 363 | 293 | 363 |
Ambient Pressure [bar] | 1 | 0.2 | 1 | 0.2 |
Ambient Temp. [K] | 293 | 293 | 293 | 293 |
Injection model | Flow Rate + Discharge |
Effervescent Breakup | fbBreakup |
Aereodynamic Breakup | Reitz–Diwakar |
Heat transfer | Ranz–Marshall |
Vaporization | Frossling + Flash Boiling Vaporization |
Collision | No Time Counter (NTC) |
Coalescence | Post and Abraham |
Dispersion | O’Rourke |
1 | |
1 | |
6 | |
1.5 | |
1 | |
10 |
AMR and Fixed Embedding Level | Grid Size | |
---|---|---|
Coarse | 2 | 500 |
Base | 3 | 250 |
Fine | 4 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duronio, F.; De Vita, A.; Montanaro, A.; Allocca, L. Experimental Investigation and Numerical CFD Assessment of a Thermodynamic Breakup Model for Superheated Sprays with Injection Pressure up to 700 Bar. Fluids 2023, 8, 155. https://doi.org/10.3390/fluids8050155
Duronio F, De Vita A, Montanaro A, Allocca L. Experimental Investigation and Numerical CFD Assessment of a Thermodynamic Breakup Model for Superheated Sprays with Injection Pressure up to 700 Bar. Fluids. 2023; 8(5):155. https://doi.org/10.3390/fluids8050155
Chicago/Turabian StyleDuronio, Francesco, Angelo De Vita, Alessandro Montanaro, and Luigi Allocca. 2023. "Experimental Investigation and Numerical CFD Assessment of a Thermodynamic Breakup Model for Superheated Sprays with Injection Pressure up to 700 Bar" Fluids 8, no. 5: 155. https://doi.org/10.3390/fluids8050155
APA StyleDuronio, F., De Vita, A., Montanaro, A., & Allocca, L. (2023). Experimental Investigation and Numerical CFD Assessment of a Thermodynamic Breakup Model for Superheated Sprays with Injection Pressure up to 700 Bar. Fluids, 8(5), 155. https://doi.org/10.3390/fluids8050155