Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Material Conditioning
2.3. Effect of Extraction Conditions on Extract Composition
Conventional Solvent Extraction
2.4. Determination of Minor Compounds
2.5. Antioxidant Capacity of Extracts
2.6. Statistical Analysis
3. Results and Discussions
3.1. Extraction Recovery
3.2. Minor Compounds in Guava Seed Extracts
MSR Optimization
3.3. Minor Compounds in Mango Seed Extracts
MSR Optimization
3.4. Antioxidant Activity of Extracts
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef] [PubMed]
- Thavorn, J.; Muangsin, V.; Gowanit, C.; Muangsin, N. Research on shelf-life extension technologies for food sustainability: An assessment of scientific activities and networks. Sci. World J. 2022, 2022, 7120662. [Google Scholar] [CrossRef] [PubMed]
- Fikire, A.H.; Zegeye, M.B. Determinants of rural household food security status in North Shewa zone, Amhara region, Ethiopia. Sci. World J. 2022, 2022, 9561063. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Martínez, L.J.; Hurtado-Benavides, A.M.; Ayala-Aponte, A.; Serna-Cock, L.; Tirado, D.F. A pilot-scale supercritical carbon dioxide extraction to valorize Colombian mango seed kernel. Molecules 2021, 26, 2279. [Google Scholar] [CrossRef] [PubMed]
- Tirado, D.F.; Fuente, E.D.L.; Calvo, L. A selective extraction of hydroxytyrosol rich olive oil from alperujo. J. Food Eng. 2019, 263, 409–416. [Google Scholar] [CrossRef]
- Vladić, J.; Jakovljević Kovač, M.; Pavić, V.; Jokić, S.; Simić, S.; Paiva, A.; Jerković, I.; Duarte, A.R. Towards a greener approach for biomass valorization: Integration of supercritical fluid and deep eutectic solvents. Antibiotics 2023, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Cerón, L.J.; Hurtado, A.M.; Ayala, A.A. Efecto de la presión y la temperatura de extracción con CO2 supercrítico sobre el rendimiento y composición de aceite de semillas de guayaba (Psidium guajava). Inf. Tecnológica 2016, 27, 249–258. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.E.; Inampues-Charfuelan, M.L.; Hurtado-Benavides, A.M.; Parada-Alfonso, F.; Vincken, J.P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Dorado, D.J.; Hurtado-Benavides, A.M.; Martínez-Correa, H.A. Extracción con CO2 supercrítico de aceite de semillas de guanábana (Annona muricata): Cinética, perfil de ácidos grasos y esteroles. Inf. Tecnológica 2016, 27, 37–48. [Google Scholar] [CrossRef]
- Pantoja-Chamorro, A.L.; Hurtado-Benavides, A.M.; Martínez-Correa, H.A. Evaluación del rendimiento, composición y actividad antioxidante de aceite de semillas de mora (Rubus glaucus) extraído con CO2 supercrítico. Inf. Tecnológica 2017, 28, 35–46. [Google Scholar] [CrossRef]
- Viguera, M.; Marti, A.; Masca, F.; Prieto, C.; Calvo, L. The process parameters and solid conditions that affect the supercritical CO2 extraction of the lipids produced by microalgae. J. Supercrit. Fluids 2016, 113, 16–22. [Google Scholar] [CrossRef]
- Brunner, G. Gas Extraction; Topics in Physical Chemistry; Steinkopff: Heidelberg, Germany, 1994; Volume 4, ISBN 978-3-662-07382-7. [Google Scholar]
- Tirado, D.F.; Calvo, L. The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of β-carotene from Dunaliella salina. J. Supercrit. Fluids 2019, 145, 211–218. [Google Scholar] [CrossRef]
- Bashipour, F.; Ghoreishi, S.M. Response surface optimization of supercritical CO2 extraction of α-tocopherol from gel and skin of Aloe vera and almond leaves. J. Supercrit. Fluids 2014, 95, 348–354. [Google Scholar] [CrossRef]
- Liu, G.; Xu, X.; Gong, Y.; He, L.; Gao, Y. Effects of supercritical CO2 extraction parameters on chemical composition and free radical-scavenging activity of pomegranate (Punica granatum L.) seed oil. Food Bioprod. Process. 2012, 90, 573–578. [Google Scholar] [CrossRef]
- Smith, T.J. Squalene: Potential chemopreventive agent. Expert Opin. Investig. Drugs 2000, 9, 1841–1848. [Google Scholar] [CrossRef]
- López-Padilla, A.; Ruiz-Rodriguez, A.; Reglero, G.; Fornari, T. Study of the diffusion coefficient of solute-type extracts in supercritical carbon dioxide: Volatile oils, fatty acids and fixed oils. J. Supercrit. Fluids 2016, 109, 148–156. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chatterjee, D.; Singhal, R.S. Supercritical carbon dioxide extraction of squalene from Amaranthus paniculatus: Experiments and process characterization. Food Bioprocess Technol. 2012, 5, 2506–2521. [Google Scholar] [CrossRef]
- Kraujalis, P.; Venskutonis, P.R. Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J. Supercrit. Fluids 2013, 80, 78–85. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M.; Dramur, M.U. Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Sep. Sci. Technol. 2011, 46, 1829–1837. [Google Scholar] [CrossRef]
- Sousa, A.; Casal, S.; Malheiro, R.; Lamas, H.; Bento, A.; Pereira, J.A. Aromatized olive oils: Influence of flavouring in quality, composition, stability, antioxidants, and antiradical potential. LWT Food Sci. Technol. 2015, 60, 22–28. [Google Scholar] [CrossRef]
- Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Karadeniz, F. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 2012, 65, 223–233. [Google Scholar] [PubMed]
- Das, B.; Yeger, H.; Baruchel, H.; Freedman, M.; Koren, G.; Baruchel, S. In vitro cytoprotective activity of squalene on a bone marrow versus neuroblastoma model of cisplatin-induced toxicity. Eur. J. Cancer 2003, 39, 2556–2565. [Google Scholar] [CrossRef]
- Ju, Y.H.; Helferich, W.G.; Clausen, L.M.; Allred, K.F.; Almada, A.L. β-Sitosterol, β-sitosterol glucoside, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J. Nutr. 2004, 134, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Debele, T.A.; Mekuria, S.L.; Tsai, H.-C. Synthesis and characterization of redox-sensitive heparin-β-sitosterol micelles: Their application as carriers for the pharmaceutical agent, doxorubicin, and investigation of their antimetastatic activities in vitro. Mater. Sci. Eng. C 2017, 75, 1326–1338. [Google Scholar] [CrossRef]
- Jones, P.J.; AbuMweis, S.S. Phytosterols as functional food ingredients: Linkages to cardiovascular disease and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 147–151. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.-M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar] [CrossRef]
- Jokić, S.; Vidović, S.; Zeković, Z.; Kuzmanović, S.P.; Jevrić, L.; Marić, B. Chemometric analysis of tocopherols content in soybean oil obtained by supercritical CO2. J. Supercrit. Fluids 2012, 72, 305–311. [Google Scholar] [CrossRef]
- Dacal-Gutiérrez, A.; Tirado, D.F.; Calvo, L. Inactivation of Clostridium spores in honey with supercritical CO2 and in combination with essential oils. Processes 2022, 10, 2232. [Google Scholar] [CrossRef]
Pressure (MPa) | Temperature (°C) | Squalene | γ-Tocopherol | α-Tocopherol | Campesterol | β-Sitosterol | Recovery (%) * |
---|---|---|---|---|---|---|---|
20.0 (−1.00) | 40 (−1.00) | 0.3 ± 0.0 | 0.6 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 11.0 ± 0.2 | 25.5 ± 1.8 |
20.0 (−1.00) | 60 (+1.00) | 0.8 ± 0.0 | 1.6 ± 1.0 | 0.5 ± 0.1 | 0.4 ± 0.1 | 15.7 ± 0.4 | 16.3 ±1.5 |
35.0 (+1.00) | 40 (−1.00) | 0.4 ± 0.0 | 0.7 ± 0.0 | 0.2 ± 0.0 | 0.0 ± 0.0 | 8.8 ± 1.0 | 72.6 ± 2.5 |
35.0 (+1.00) | 60 (+1.00) | 0.2 ± 0.0 | 0.5 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.4 ± 0.1 | 90.5 ± 2.6 |
16.9 (−1.41) | 50 (0.00) | 1.5 ± 0.1 | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.7 ± 0.1 | 18.5 ± 0.1 | 13.8 ± 0.4 |
38.1 (+1.41) | 50 (0.00) | 0.2 ± 0.0 | 0.6 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 6.3 ± 1.0 | 95.3 ± 3.0 |
27.5 (0.00) | 36 (−1.40) | 0.5 ± 0.1 | 1.1 ± 0.1 | 0.2 ± 0.0 | 0.0 ± 0.0 | 9.6 ± 0.3 | 56.1 ± 1.9 |
27.5 (0.00) | 64 (+1.41) | 0.5 ± 0.1 | 0.7 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 7.3 ± 0.2 | 38.7 ± 2.5 |
27.5 (0.00) | 50 (0.00) | 0.3 ± 0.0 | 0.7 ± 0.1 | 0.3 ± 0.1 | 0.0 ± 0.0 | 9.9 ± 0.2 | 82.7 ± 1.8 |
Soxhlet extraction (n-hexane) | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.1 ± 0.2 | 100.0 |
Pressure (MPa) | Temperature (°C) | Squalene | α-Tocopherol | Campesterol | Stigmasterol | β-Sitosterol | Recovery (%) * |
---|---|---|---|---|---|---|---|
25.0 (−1.00) | 55 (−1.00) | 3.3 ± 0.6 | 0.2 ± 0.0 | 0.7 ± 0.1 | 1.7 ± 0.3 | 5.6 ± 0.1 | 55.1 ± 2.3 |
25.0 (−1.00) | 70 (+1.00) | 4.3 ± 0.4 | 0.6 ± 0.1 | 0.8 ± 0.0 | 1.9 ± 0.0 | 5.8 ± 0.0 | 38.4 ± 1.6 |
35.0 (+1.00) | 55 (−1.00) | 1.6 ± 0.1 | 0.0 ± 0.0 | 0.2 ± 0.0 | 0.7 ± 0.1 | 2.0 ± 0.0 | 76.4 ± 2.7 |
35.0 (+1.00) | 70 (+1.00) | 1.5 ± 0.1 | 0.1 ± 0.0 | 0.3 ± 0.1 | 0.7 ± 0.1 | 2.2 ± 0.3 | 82.0 ± 3.4 |
22.9 (−1.41) | 63 (0.00) | 7.6 ± 0.5 | 0.4 ± 0.0 | 0.8 ± 0.1 | 1.8 ± 0.1 | 4.7 ± 0.1 | 26.3 ± 2.5 |
37.1 (+1.41) | 63 (0.00) | 2.6 ± 0.4 | 0.1 ± 0.0 | 0.5 ± 0.0 | 1.1 ± 0.3 | 3.9 ± 0.5 | 87.7 ± 3.3 |
30.0 (0.00) | 52 (−1.41) | 1.5 ± 0.3 | 0.0 ± 0.0 | 0.3 ± 0.0 | 0.9 ± 0.0 | 2.9 ± 0.2 | 69.0 ± 3.9 |
30.0 (0.00) | 73 (+1.41) | 4.3 ± 0.4 | 0.2 ± 0.0 | 0.6 ± 0.0 | 1.3 ± 0.0 | 3.9 ± 0.0 | 71.1 ± 3.0 |
30.0 (0.00) | 63 (0.00) | 2.1 ± 0.4 | 0.1 ± 0.1 | 0.3 ± 0.1 | 0.7 ± 0.1 | 2.3 ± 0.4 | 80.3 ± 3.1 |
Soxhlet extraction (n-hexane) | 1.5 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.6 ± 0.1 | 2.0 ± 0.5 | 100.0 |
Guava Seed Extracts | Mango Seed Extracts | ||||
---|---|---|---|---|---|
Pressure (MPa) | Temperature (°C) | µmol Trolox/100 g | Pressure (MPa) | Temperature (°C) | µmol Trolox/100 g |
20.0 (−1.00) | 40 (−1.00) | 243 ± 4 bcde | 25.0 (−1.00) | 55 (−1.00) | 236 ± 85 b |
20.0 (−1.00) | 60 (+1.00) | 262 ± 5 ef | 25.0 (−1.00) | 70 (+1.00) | 263 ± 5 c |
35.0 (+1.00) | 40 (−1.00) | 226 ± 5 bc | 35.0 (+1.00) | 55 (−1.00) | 215 ± 2 ab |
35.0 (+1.00) | 60 (+1.00) | 235 ± 4 bcd | 35.0 (+1.00) | 70 (+1.00) | 226 ± 8 b |
16.9 (−1.41) | 50 (0.00) | 281 ± 9 f | 22.9 (−1.41) | 63 (0.00) | 317 ± 8 e |
38.1 (+1.41) | 50 (0.00) | 222 ± 6 b | 37.1 (+1.41) | 63 (0.00) | 225 ± 7 ab |
27.5 (0.00) | 36 (−1.40) | 224 ± 3 b | 30.0 (0.00) | 52 (−1.41) | 263 ± 3 c |
27.5 (0.00) | 64 (+1.41) | 254 ± 4 de | 30.0 (0.00) | 73 (+1.41) | 281 ± 3 cd |
27.5 (0.00) | 50 (0.00) | 248 ± 4 cde | 30.0 (0.00) | 63 (0.00) | 291 ± 4 de |
Soxhlet extraction | 177 ± 6 a | Soxhlet extraction | 200 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón-Martínez, L.J.; Hurtado-Benavides, A.M.; Ayala-Aponte, A.; Serna-Cock, L.; Tirado, D.F. Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry. Fluids 2023, 8, 256. https://doi.org/10.3390/fluids8090256
Cerón-Martínez LJ, Hurtado-Benavides AM, Ayala-Aponte A, Serna-Cock L, Tirado DF. Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry. Fluids. 2023; 8(9):256. https://doi.org/10.3390/fluids8090256
Chicago/Turabian StyleCerón-Martínez, Leidy J., Andrés M. Hurtado-Benavides, Alfredo Ayala-Aponte, Liliana Serna-Cock, and Diego F. Tirado. 2023. "Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry" Fluids 8, no. 9: 256. https://doi.org/10.3390/fluids8090256
APA StyleCerón-Martínez, L. J., Hurtado-Benavides, A. M., Ayala-Aponte, A., Serna-Cock, L., & Tirado, D. F. (2023). Bioactive Fractions Isolated from By-Products of the Guava (Psidium guajava) and Mango (Mangifera indica L.) Agri-Food Industry. Fluids, 8(9), 256. https://doi.org/10.3390/fluids8090256