Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows
Abstract
:1. Introduction
2. Numerical Models
3. Mesh Analysis
3.1. Steady-State Mesh Assessment
3.2. Unsteady-State Mesh Assessment
3.2.1. The Rational
3.2.2. Short-Term Accuracy
3.2.3. Long-Term Accuracy
3.3. Numerical Stability
3.4. The Most Efficient Mesh
3.4.1. Transient Results Calculation for the Piezometric Head in the Dimensionless Form
3.4.2. Transient Results Calculation for the Piezometric Head in the Dimensional Form
4. Performance of the Two Best Meshes
4.1. Aim and Meshes Characterization
4.2. The Steady-State Flow Simulation
4.3. The Unsteady Flow Simulation
5. Transient Dynamic Characterization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CR | geometric sequence common ratio (-) |
c | pressure wave speed (m/s) |
H | piezometric head (m) |
g | acceleration due to gravity (m/s2) |
L | pipe length (m) |
Q | flow rate or discharge (m3/s) |
NC | total number of cylinders of the radial mesh (-) |
NHR | total number of cylinders in the three outer regions (turbulence model) |
NX | number of axial mesh points in the pipe direction (-) |
R | pipe inner radius (m) |
r | distance from the axis in the radial direction (m) |
t | time (s) |
U | mean velocity of the fluid in the pipe cross section (m/s) |
∆t | numerical time step (s) |
∆x | numerical spatial step (m) |
∆rj | ) |
ε | pipe wall roughness (m) |
u | axial velocity (m/s) |
turbulence velocity fluctuation on the axial direction (m/s) | |
radial velocity (m/s) | |
turbulence velocity fluctuation on the radial direction (m/s) | |
x | distance along the pipe (m) |
ν | kinematic viscosity of liquid (m2/s) |
ϱ | liquid density (kg/m3) |
wall shear stress (Pa) | |
steady wall shear stress (Pa) | |
unsteady wall shear stress (Pa) | |
Abbreviations | |
CFD | computation fluid dynamics |
MAPE | mean absolute percentage error |
Q2D | axisymmetric or quasi-2D model |
References
- Vardy, A.E.; Brown, J.M.B. Transient Turbulent Friction in Smooth Pipe Flows. J. Sound Vib. 2003, 259, 1011–1036. [Google Scholar] [CrossRef]
- Ferras, F.; Manso, A.; Schleiss, A.; Covas, I.C.D. Experimental distinction of damping mechanisms during hydraulic transients in pipe flow. J. Fluids Struct. 2016, 66, 424–446. [Google Scholar] [CrossRef]
- Ghidaoui, M.; Zhao, M.; McInnis, D.; Axworthy, D. A review of water hammer theory and practice. Appl. Machanics Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- Vitkosky, J.; Bergant, A.; Simpson, A.; Lambert, M. Systematic evaluation of one-dimensional unsteady friction models in simple pipelines. J. Hydraul. Eng. 2006, 132, 696–708. [Google Scholar] [CrossRef]
- Brunone, B.; Golia, U.; Greco, M.; IAHR-Group. Modelling of fast transient by numerical methods. In Proceedings of the International Conference on Hydraulic Transients with Water Column Separation, Madrid, Spain, 4–6 September 1991; pp. 273–280.
- Brunone, B.; Golia, U.; Greco, M.; IAHR-Group. Some remarques on the momentum equation for fast transients. In Proceedings of the International Conference on Hydraulic Transients with Water Column Separation, Madrid, Spain, 4–6 September 1991; pp. 201–209. [Google Scholar]
- Vitkosky, J.; Lambert, M.; Simpson, A.; Bergant, A.; BHr Group. Advances in unsteady friction modelling in transient pipe flow. In Proceedings of the 8th International Conference on ‘Pressures Surges’, Hague, The Netherlands, 12–14 April 2000; pp. 471–481. [Google Scholar]
- Vardy, A.E.; BHR Group. Acceleration-dependent unsteady friction revisited. In Proceedings of the 13th International Conference on Pressure Surge, Bordeaux, France, 14–16 November 2018; pp. 265–282. [Google Scholar]
- Vardy, A.; Brown, J.; He, S.; Ariyaratne, C.; Gorji, S. Applicability of frozen-viscosity models of unsteady wall shear stress. J. Hydraul. Eng. 2015, 141, 04014064. [Google Scholar] [CrossRef]
- Zielke, W. Frequency-dependent friction in transient in pipe flow. J. Basic Eng. 1968, 90, 109–115. [Google Scholar] [CrossRef]
- Vardy, A.E.; Hwang, K.-L.; Brown, J.M. A weighting function model of transient turbulent pipe friction. J. Hydraul. Res. 1993, 31, 533–548. [Google Scholar] [CrossRef]
- Trikha, A. An efficient method for simulating frequency-dependent friction in transient liquid flow. J. Fluids Eng. 1975, 97, 97–105. [Google Scholar] [CrossRef]
- Martins, N.; Brunone, B.; Meniconi, S.; Ramos, H.; Covas, D. Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modelling: Pressure Wave propagation and Velocity Profile Changes. J. Fluids Eng. 2018, 140, 011102. [Google Scholar] [CrossRef]
- Vardy, A.E.; Hwang, K.-L. A characteristic model of transient in pipes. J. Hydraul. Res. 1991, 29, 669–684. [Google Scholar] [CrossRef]
- Cebecci, T. Analysis of Turbulent Flows with Computer Programs, 3rd ed.; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Abreu, J.; Betâmio de Almeida, A. Timescale behavior of the wall shear stress in unsteady laminar pipe flows. J. Hydraul. Eng. 2009, 135, 415–424. [Google Scholar] [CrossRef]
- Zhao, M.; Ghidaoui, M. Investigation of turbulence behavior in pipe transient using a k-e model. J. Hydraul. Res. 2010, 44, 682–692. [Google Scholar] [CrossRef]
- Riasi, A.; Nourbakhsh, A.; Raisee, M. Unsteady turbulent pipe flow due to water hammer using k-ω turbulence model. J. Hydraul. Res. 2009, 47, 429–437. [Google Scholar] [CrossRef]
- Zhao, M.; Ghidaoui, M. Efficient quasi-two-dimensional model for water hammer problems. J. Hydraul. Eng. 2003, 129, 1007–1013. [Google Scholar] [CrossRef]
- Korbar, R.V. Efficient solution method for quasi two-dimensional model of water hammer. J. Hydraul. Res. 2014, 52, 575–579. [Google Scholar] [CrossRef]
- Korbar, R.V. Truncated method of characteristics for quasi-two dimensional water hammer model. J. Hydraul. Eng. 2014, 140, 04014013. [Google Scholar] [CrossRef]
- Ferreira, P.L.; Covas, D.I.C. New Optimized Equal-Area Mesh Used in Axisymmetric Models for Laminar Transient Flows. Water 2023, 15, 1402. [Google Scholar] [CrossRef]
- Hirsch, C. Numerical Computation of Internal & External Flows, 2nd ed.; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Ferreira, J.P.; Martins, N.M.C.; Covas, D.I.C. Ball Valve Behavior under Steady and Unsteady Conditions. J. Hydraul. Eng. 2018, 144, 04018005. [Google Scholar] [CrossRef]
- Ferras, D.; Manso, P.A.; Schleiss, A.J.; Covas, D.I.C. Fluid-structure interaction in straight pipelines with different anchoring conditions. J. Sound Vib. 2017, 394, 348–365. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 2nd ed.; DCW Industries: La Canada, CA, USA, 1998. [Google Scholar]
60 | 0.50, 1.00, 2.50, 5.00 | 0.18, 0.30, 0.43, 0.55, 0.63 |
80 | 0.20, 0.36, 0.53, 0.63, 0.71 | |
100 | 0.22, 0.43, 0.60, 0.70, 0.75 | |
120 | 0.23, 0.49, 0.67, 0.77, 0.80 |
5.0 | 2.5 | 1.0 | 0.5 | |||
---|---|---|---|---|---|---|
60 | 0.18 | 1 | 5.22 (−95.1%) | 5.25 (−95.1%) | 5.27 (−95.1%) | 5.27 (−95.1%) |
0.30 | 3 | 11.00 (−89.7%) | 11.20 (−89.5%) | 11.40 (−89.3%) | 11.40 (−89.3%) | |
0.43 | 5 | 21.40 (−79.9%) | 23.10 (−78.3%) | 24.20 (−77.3%) | 24.80 (−76.7%) | |
0.55 | 7 | 32.80 (−69.3%) | 39.90 (−62.5%) | 45.40 (−57.4%) | 51.20 (−52.0%) | |
0.63 | 9 | 50.50 (−52.6%) | 63.00 (−40.9%) | 84.40 (−20.5%) | ||
80 | 0.20 | 1 | 7.90 (−92.6%) | 8.00 (−92.5%) | 8.10 (−92.4%) | 8.10 (−92.4%) |
0.36 | 3 | 19.60 (−81.6%) | 20.80 (−80.4%) | 21.70 (−79.6%) | 22.10 (−79.3%) | |
0.53 | 5 | 42.50 (−60.1%) | 51.90 (−51.3%) | 56.70 (−46.8%) | ||
0.63 | 7 | 94.80 (−11.0%) | ||||
0.71 | 9 | |||||
100 | 0.22 | 1 | 11.40 (−89.3%) | 11.60 (−89.1%) | 11.80 (−88.9%) | 11.80 (−88.9%) |
0.43 | 3 | 29.30 (−72.5%) | 33.90 (−68.2%) | 38.10 (−64.3%) | 39.80 (−62.6%) | |
0.60 | 5 | 92.90 (−12.8%) | ||||
0.70 | 7 | |||||
0.75 | 9 | |||||
120 | 0.23 | 1 | 15.10 (−85.8%) | 15.70 (−85.3%) | 16.10 (−84.9%) | 16.20 (−84.8%) |
0.49 | 3 | 45.40 (−57.4%) | 57.01 (−46.4%) | 63.70 (−40.2%) | ||
0.67 | 5 | 106.6 | ||||
0.77 | 7 | |||||
0.80 | 9 | |||||
Numerical instabilities did not allow to obtain a solution | ||||||
Short-term accuracy was not influenced by a higher pipe discretization | ||||||
A higher conduit discretization had a limited influence on short term-accuracy | ||||||
The benchmark (or reference) mesh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, P.L.; Covas, D.I.C. Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows. Fluids 2024, 9, 268. https://doi.org/10.3390/fluids9110268
Ferreira PL, Covas DIC. Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows. Fluids. 2024; 9(11):268. https://doi.org/10.3390/fluids9110268
Chicago/Turabian StyleFerreira, Pedro Leite, and Dídia Isabel Cameira Covas. 2024. "Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows" Fluids 9, no. 11: 268. https://doi.org/10.3390/fluids9110268
APA StyleFerreira, P. L., & Covas, D. I. C. (2024). Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows. Fluids, 9(11), 268. https://doi.org/10.3390/fluids9110268