Understanding the Application of Emulsion Systems for Bacterial Encapsulation and Temperature-Modulated Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Bacterial Cultures
2.2. Bacterial Cell Preparation
2.3. Microfluidic Device Fabrications
2.4. Microfluidic Encapsulation of E. coli-GFP in W/O and W1/O/W2 Droplets
2.5. Storage of Samples at Different Temperatures
2.6. Bacterial Viability Determination
2.7. Microscopic Observation of Droplet Destabilisation
2.8. Determination of Droplet Size and Phase Separation
2.9. Measuring the Release of Bacteria from W1/O/W2 Droplet
2.10. Differential Scanning Calorimetry
2.11. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Storage on Droplet Size Change
3.2. The Effect of Storage on Phase Separation of Emulsions
3.3. Thermal Properties of Emulsions Determined Using Differential Scanning Calorimetry (DSC)
3.4. Bacterial Viability During Storage
3.5. The Release of Bacteria from Double Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavarri, M.; Maranon, I.; Carmen, M. Encapsulation Technology to Protect Probiotic Bacteria. In Probiotics; Rigobelo, E.C., Ed.; IntechOpen: London, UK, 2012; pp. 502–529. [Google Scholar]
- Devanthi, P.V.P.; Linforth, R.; El Kadri, H.; Gkatzionis, K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem. 2018, 257, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Meng, Z.; Luo, Z.; Duan, H.; Ramaswamy, H.S.; Wang, C. Effect of Emulsion Particle Size on the Encapsulation Behavior and Oxidative Stability of Spray Microencapsulated Sweet Orange Oil (Citrus aurantium var. dulcis). Foods 2023, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Sobti, B.; Kamal-Eldin, A.; Rasul, S.; Alnuaimi, M.S.K.; Alnuaimi, K.J.J.; Alhassani, A.A.K.; Almheiri, M.M.A.; Nazir, A. Encapsulation Properties of Mentha piperita Leaf Extracts Prepared Using an Ultrasound-Assisted Double Emulsion Method. Foods 2023, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Dluska, E.; Markowska-Radomska, A.; Metera, A.; Tomaszewski, W. Drug-Core Double Emulsions for Co-Release of Active Ingredients. Int. J. Chem. Eng. Appl. 2017, 7, 428–432. [Google Scholar] [CrossRef]
- Fonseca, F.; Béal, C.; Corrieu, G. Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology 2002, 43, 189–198. [Google Scholar] [CrossRef]
- Wang, G.; Yu, X.; Lu, Z.; Yang, Y.; Xia, Y.; Lai, P.F.-H.; Ai, L. Optimal combination of multiple cryoprotectants and freezing-thawing conditions for high lactobacilli survival rate during freezing and frozen storage. LWT 2019, 99, 217–223. [Google Scholar] [CrossRef]
- Goderska, K.; Czarnecki, Z. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Pol. J. Microbiol. 2008, 57, 135–140. [Google Scholar]
- Dianawati, D.; Mishra, V.; Shah, N.P. Survival of Bifidobacterium longum 1941 microencapsulated with proteins and sugars after freezing and freeze-drying. Food Res. Int. 2013, 51, 503–509. [Google Scholar] [CrossRef]
- Nurliyani Suranindyah, Y.; Pretiwi, P. Quality and Emulsion Stability of Milk from Ettawah Crossed Bred Goat During Frozen Storage. Procedia Food Sci. 2015, 3, 142–149. [Google Scholar] [CrossRef]
- de Farias, T.G.S.; Ladislau, H.F.L.; Stamford, T.C.M.; Medeiros, J.A.C.; Soares, B.L.M.; Arnaud, T.M.S.; Stamford, T.L.M. Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. LWT 2019, 100, 391–396. [Google Scholar] [CrossRef]
- Vanapalli, S.A.; Palanuwech, J.; Coupland, J.N. Stability of emulsions to dispersed phase crystallization: Effect of oil type, dispersed phase volume fraction, and cooling rate. Colloids Surf. A Physicochem. Eng. Asp. 2002, 204, 227–237. [Google Scholar] [CrossRef]
- Cramp, G.L.; Docking, A.M.; Ghosh, S.; Coupland, J.N. On the stability of oil-in-water emulsions to freezing. Food Hydrocoll. 2004, 18, 899–905. [Google Scholar] [CrossRef]
- Ghosh, S.; Coupland, J.N. Factors affecting the freeze-thaw stability of emulsions. Food Hydrocoll. 2008, 22, 105–111. [Google Scholar] [CrossRef]
- Tippetts, M.; Martini, S. Effect of cooling rate on lipid crystallization in oil-in-water emulsions. Food Res. Int. 2009, 42, 847–855. [Google Scholar] [CrossRef]
- Lin, C.; He, G.; Li, X.; Peng, L.; Dong, C.; Gu, S.; Xiao, G. Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplet. Sep. Purif. Technol. 2007, 56, 175–183. [Google Scholar] [CrossRef]
- Rojas, E.C.; Papadopoulos, K.D. Induction of instability in water-in-oil-in-water double emulsions by freeze-thaw cycling. Langmuir 2007, 23, 6911–6917. [Google Scholar] [CrossRef]
- Rojas, E.C.; Staton, J.A.; John, V.T.; Papadopoulos, K.D. Temperature-induced protein release from water-in-oil-in-water double emulsions. Langmuir 2008, 24, 7154–7160. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Jiang, L.; Huang, H. Microbial Encapsulation and Targeted Delivery Mechanisms of Double Emulsion Loaded with Probiotics—A State-of-Art Review. Food Rev. Int. 2023, 40, 1731–1755. [Google Scholar] [CrossRef]
- Guan, X.; Li, Y.; Jiang, H.; Tse, Y.L.S.; Ngai, T. Temperature-responsive Pickering double emulsions stabilized by binary microgels. Chem.—Asian J. 2023, 18, e202300587. [Google Scholar] [CrossRef]
- Bernal-Chávez, S.A.; Romero-Montero, A.; Hernández-Parra, H.; Peña-Corona, S.I.; Del Prado-Audelo, M.L.; Alcalá-Alcalá, S.; Cortés, H.; Kiyekbayeva, L.; Sharifi-Rad, J.; Leyva-Gómez, G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: Challenges and opportunities for process optimization through quality by design approach. J. Biol. Eng. 2023, 17, 35. [Google Scholar] [CrossRef]
- Kim, P.; Kwon, K.W.; Park, M.C.; Lee, S.H.; Kim, S.M.; Suh, K.Y. Soft lithography for microfluidics: A review. Biochip. J. 2008, 2, 1–11. [Google Scholar]
- Bauer, W.A.C.; Fischlechner, M.; Abell, C.; Huck, W.T.S. Hydrophilic PDMS Microchannels for High-Throughput Formation of Oil-in-Water Microdroplets and Water-in-Oil-in-Water Double Emulsions. Lab Chip 2010, 10, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Miles, B.Y.A.A.; Misra, S.S.; Irwin, J.O. The Estimation of The Bactericidal Power of The Blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Find Circles Using Circular Hough Transform—MATLAB Imfindcircles. Available online: https://www.mathworks.com/help/images/ref/imfindcircles.html (accessed on 8 October 2020).
- El Kadri, H.; Overton, T.; Bakalis, S.; Gkatzionis, K. Understanding and Controlling the Release Mechanism of Escherichia Coli in Double W 1 /O/W 2 Emulsion Globules in the Presence of NaCl in the W 2 Phase. RSC Adv. 2015, 5, 105098–105110. [Google Scholar] [CrossRef]
- Tieko Nassu, R.; Gonçalves, L.A.G. Determination of Melting Point of Vegetable Oils and Fats by Differential Scanning Calorimetry (DSC) Technique. Grasas y Aceites 1999, 50, 16–21. [Google Scholar] [CrossRef]
- Harada, T.; Yokomizo, K. Demulsification of Oil-in-Water Emulsion under Freezing Conditions: Effect of Crystal Structure Modifier. J. Am. Oil Chem. Soc. 2000, 77, 859–864. [Google Scholar] [CrossRef]
- Mezzenga, R.; Folmer, B.M.; Hughes, E. Design of Double Emulsions by Osmotic Pressure Tailoring. Langmuir 2004, 20, 3574–3582. [Google Scholar] [CrossRef]
- Ishibashi, C.; Hondoh, H.; Ueno, S. Influence of Morphology and Polymorphic Transformation of Fat Crystals on the Freeze-Thaw Stability of Mayonnaise-Type Oil-in-Water Emulsions. Food Res. Int. 2016, 89, 604–613. [Google Scholar] [CrossRef]
- Aronson, M.P.; Petko, M.F. Highly Concentrated Water-in-Oil Emulsions: Influence of Electrolyte on Their Properties and Stability. J. Colloid Interface Sci. 1993, 159, 134–149. [Google Scholar] [CrossRef]
- Aronson, M.P.; Ananthapadmanabhan, K.; Petko, M.F.; Palatini, D.J. Origins of Freeze-Thaw Instability in Concentrated Water-in-Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 1994, 85, 199–210. [Google Scholar] [CrossRef]
- He, G.; Chen, G. Lubricating Oil Sludge and Its Demulsification. Dry. Technol. 2002, 20, 1009–1018. [Google Scholar] [CrossRef]
- Chen, G.; He, G. Separation of Water and Oil from Water-in-Oil Emulsion by Freeze/Thaw Method. Sep. Purif. Technol. 2003, 31, 83–89. [Google Scholar] [CrossRef]
- Ghosh, S.; Rousseau, D. Freeze-Thaw Stability of Water-in-Oil Emulsions. J. Colloid Interface Sci. 2009, 339, 91–102. [Google Scholar] [CrossRef]
- van Boekel, M.A.J.S.; Walstra, P. Stability of Oil-in-Water Emulsions with Crystals in the Disperse Phase. Colloids Surf. 1981, 3, 109–118. [Google Scholar] [CrossRef]
- Degner, B.M.; Olson, K.M.; Rose, D.; Schlegel, V.; Hutkins, R.; McClements, D.J. Influence of Freezing Rate Variation on the Microstructure and Physicochemical Properties of Food Emulsions. J. Food Eng. 2013, 119, 244–253. [Google Scholar] [CrossRef]
- Degner, B.M.; Chung, C.; Schlegel, V.; Hutkins, R.; Mcclements, D.J. Factors Influencing the Freeze-Thaw Stability of Emulsion-Based Foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 98–113. [Google Scholar] [CrossRef]
- Mohd Isa, N.S.; El Kadri, H.; Vigolo, D.; Gkatzionis, K. Optimisation of Bacterial Release from a Stable Microfluidic-Generated Water-in-Oil-in-Water Emulsion. RSC Adv. 2021, 11, 7738–7749. [Google Scholar] [CrossRef]
- Magdassi, S.; Garti, N. Formation of Water/Oil/Water Multiple Emulsions with Solid Oil Phase. J. Colloid Interface Sci. 1987, 120, 537–539. [Google Scholar] [CrossRef]
- Hou, W.; Papadopoulos, K.D. Stability of Water-in-Oil-in-Water Type Globules. Chem. Eng. Sci. 1996, 51, 5043–5051. [Google Scholar] [CrossRef]
- Zhu, X.F.; Zhang, N.; Lin, W.F.; Tang, C.H. Freeze-Thaw Stability of Pickering Emulsions Stabilized by Soy and Whey Protein Particles. Food Hydrocoll. 2017, 69, 173–184. [Google Scholar] [CrossRef]
- Chen, Z.A.; Huang, F.; Tsai, P.A.; Komrakova, A. Numerical Study of Microfluidic Emulsion Dynamics under the Influence of Heterogeneous Surface Wettability. Int. J. Multiph. Flow 2022, 147. [Google Scholar] [CrossRef]
- Malakshah, V.M.; Darabi, M.; Sattari, A.; Hanafizadeh, P. Numerical Investigation of Double Emulsion Formation in Non-Newtonian Fluids Using Double Co-Flow Geometry. Chem. Eng. Res. Des. 2024, 203, 165–177. [Google Scholar] [CrossRef]
- Boode, K.; Walstra, P.; de Groot-Mostert, A.E.A. Partial Coalescence in Oil-in-Water Emulsions 2. Influence of the Properties of the Fat. Colloids Surf. A Physicochem. Eng. Asp. 1993, 81, 139–151. [Google Scholar] [CrossRef]
- Marefati, A.; Rayner, M.; Timgren, A.; Dejmek, P.; Sjöö, M. Freezing and Freeze-Drying of Pickering Emulsions Stabilized by Starch Granules. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 512–520. [Google Scholar] [CrossRef]
- Souzu, H. Studies on the Damage to Escherichia Coli Cell Membrane Caused by Different Rates of Freeze-Thawing. BBA Biomembr. 1980, 603, 13–26. [Google Scholar] [CrossRef]
- Mohd Isa, N.S.; El Kadri, H.; Vigolo, D.; Gkatzionis, K. The Effect of Bacteria on the Stability of Microfluidic-Generated Water-in-Oil Droplet. Micromachines 2022, 13, 2067. [Google Scholar] [CrossRef]
- Firoozmand, H.; Rousseau, D. Microbial Cells as Colloidal Particles: Pickering Oil-in-Water Emulsions Stabilized by Bacteria and Yeast. FRIN 2016, 81, 66–73. [Google Scholar] [CrossRef]
- Clausse, D.; Gomez, F.; Pezron, I.; Komunjer, L.; Dalmazzone, C. Morphology Characterization of Emulsions by Differential Scanning Calorimetry. Adv. Colloid. Interface Sci. 2005, 117, 59–74. [Google Scholar] [CrossRef]
- Kovács, A.; Csóka, I.; Kónya, M.; Csányi, E.; Fehér, A.; Er\Hos, I. Structural Analysis of w/o/w Multiple Emulsions by Means of DSC. J. Therm. Anal. Calorim. 2005, 82, 491–497. [Google Scholar] [CrossRef]
- Schuch, A.; Köhler, K.; Schuchmann, H.P. Differential Scanning Calorimetry (DSC) in Multiple W/O/W Emulsions: A Method to Characterize the Stability of Inner Droplets. J. Therm. Anal. Calorim. 2013, 111, 1881–1890. [Google Scholar] [CrossRef]
- Souzu, H. Changes in Chemical Structure and Function in Escherichia Coli Cell Membranes Caused by Freeze-Thawing. I. Change of Lipid State in Bilayer Vesicles and in the Original Membrane Fragments Depending on Rate of Freezing. BBA Biomembr. 1989, 978, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Souzu, H.; Sato, M.; Kojima, T. Changes in Chemical Structure and Function in Escherichia Coli Cell Membranes Caused by Freeze-Thawing. II. Membrane Lipid State and Response of Cells to Dehydration. BBA Biomembr. 1989, 978, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Strocchi, M.; Ferrer, M.; Timmis, K.N.; Golyshin, P.N. Low Temperature-Induced Systems Failure in Escherichia Coli: Insights from Rescue by Cold-Adapted Chaperones. Proteomics 2006, 6, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Simonin, H.; Bergaoui, I.M.; Perrier-Cornet, J.M.; Gervais, P. Cryopreservation of Escherichia Coli K12TG1: Protection from the Damaging Effects of Supercooling by Freezing. Cryobiology 2015, 70, 115–121. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.V.; Aryana, K.J.; Prinyawiwatkul, W.; Ordonez, K.M.C.; Boeneke, C.A. Short Communication: The Effects of Frozen Storage on the Survival of Probiotic Microorganisms Found in Traditionally and Commercially Manufactured Kefir. J. Dairy Sci. 2016, 99, 7043–7048. [Google Scholar] [CrossRef]
- Powell-Palm, M.J.; Preciado, J.; Lyu, C.; Rubinsky, B. Escherichia Coli Viability in an Isochoric System at Subfreezing Temperatures. Cryobiology 2018, 85, 17–24. [Google Scholar] [CrossRef]
- Mazur, P. Freezing of Living Cells: Mechanisms and Implications. Am. J. Physiol.-Cell Physiol. 2017, 247, C125–C142. [Google Scholar] [CrossRef]
- Priya, A.J.; Vijayalakshmi, S.P.; Raichur, A.M. Enhanced Survival of Probiotic Lactobacillus Acidophilus by Encapsulation with Nanostructured Polyelectrolyte Layers through Layer-by-Layer Approach. J. Agric. Food Chem. 2011, 59, 11838–11845. [Google Scholar] [CrossRef]
- Sánchez, A.; Contreras, A.; Jiménez, J.; Luengo, C.; Corrales, J.C.; Fernández, C. Effect of Freezing Goat Milk Samples on Recovery of Intramammary Bacterial Pathogens. Vet. Microbiol. 2003, 94, 71–77. [Google Scholar] [CrossRef]
- Hirai, T.; Hodono, M.; Komasawa, I. Preparation of Spherical Calcium Phosphate Fine Particles Using an Emulsion Liquid Membrane System. Langmuir 2000, 16, 955–960. [Google Scholar] [CrossRef]
- Hirai, T.; Hariguchi, S.; Komasawa, I.; Davey, R.J. Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion. Langmuir 2002, 13, 6650–6653. [Google Scholar] [CrossRef]
Samples | Temperature (°C) | Average Droplet Diameter (µm) | Coefficient of Variation (%) | ||
---|---|---|---|---|---|
Before | After | Before | After | ||
W/O without E. coli-GFP | 25 | 50.4 aA ± 4.7 | 55.3 aA ± 5.2 | 9.3 | 9.4 |
5 | 50.4 aA + ± 4.8 | 57.7 aA ± 5.6 | 9.5 | 9.7 | |
−20 | 50.3 aA ± 4.9 | 59.6 cB ± 6.6 | 9.7 | 11.1 | |
−80 | 50.7 aA ± 4.8 | 67.2 dB ± 19.0 | 9.6 | 28.3 | |
W/O with E. coli-GFP | 25 | 50.8 aA ± 4.7 | 52.1 aA ± 4.9 | 9.3 | 9.4 |
5 | 50.0 aA ± 4.9 | 53.7 aA ± 5.3 | 9.8 | 9.9 | |
−20 | 50.4 aA ± 4.9 | 55.3 bB ± 5.4 | 9.7 | 9.8 | |
−80 | 50.5 aA ± 5.0 | 62.8 cB ± 15.6 | 9.9 | 24.8 | |
W1/O/W2 without E. coli-GFP | 25 | 100.3 aA ± 6.9 | 79.0 aB ± 15.6 | 6.9 | 19.7 |
5 | 100.7 aA ± 7.3 | 75.4 bB ± 14.9 | 7.2 | 19.8 | |
−20 | 100.6 aA ± 7.1 | 122.3 cB ± 20.2 | 7.1 | 16.5 | |
−80 | 101.8 aA ± 7.4 | 133.8 dB ± 20.9 | 7.3 | 15.6 | |
W1/O/W2 with E. coli-GFP | 25 | 100.9 aA ± 7.1 | 79.4 aB ± 15.6 | 7.0 | 19.6 |
5 | 100.3 aA ± 7.7 | 76.3 bB ± 14.7 | 7.7 | 19.3 | |
−20 | 100.4 aA ± 7.1 | 116.7 cB ± 18.5 | 7.1 | 15.9 | |
−80 | 100.4 aA ± 7.4 | 126.3 dB ± 18.9 | 7.4 | 14.9 |
Temperature (°C) | Overall Viability (log CFU/mL) | Released (log CFU/mL) | Released (%) |
---|---|---|---|
25 | 6.42 ± 0.03 | 2.75 ± 0.02 | 42.80 ± 0.51 |
5 | 6.18 ± 0.01 | 2.77 ± 0.01 | 44.89 ± 0.23 |
−20 | 5.19 ± 0.02 | 5.10 ± 0.01 | 98.36 ± 0.18 |
−80 | 4.93 ± 0.03 | 4.90 ± 0.01 | 99.35 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Isa, N.S.; El Kadri, H.; Vigolo, D.; Mohamed Zakhari, N.F.A.; Gkatzionis, K. Understanding the Application of Emulsion Systems for Bacterial Encapsulation and Temperature-Modulated Release. Fluids 2024, 9, 274. https://doi.org/10.3390/fluids9120274
Mohd Isa NS, El Kadri H, Vigolo D, Mohamed Zakhari NFA, Gkatzionis K. Understanding the Application of Emulsion Systems for Bacterial Encapsulation and Temperature-Modulated Release. Fluids. 2024; 9(12):274. https://doi.org/10.3390/fluids9120274
Chicago/Turabian StyleMohd Isa, Nur Suaidah, Hani El Kadri, Daniele Vigolo, Nur Farra Adlina Mohamed Zakhari, and Konstantinos Gkatzionis. 2024. "Understanding the Application of Emulsion Systems for Bacterial Encapsulation and Temperature-Modulated Release" Fluids 9, no. 12: 274. https://doi.org/10.3390/fluids9120274
APA StyleMohd Isa, N. S., El Kadri, H., Vigolo, D., Mohamed Zakhari, N. F. A., & Gkatzionis, K. (2024). Understanding the Application of Emulsion Systems for Bacterial Encapsulation and Temperature-Modulated Release. Fluids, 9(12), 274. https://doi.org/10.3390/fluids9120274