Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability
Abstract
:1. Introduction
2. Linear Stability Theory
3. Isotropic Turbulence
4. Methodology and Simulation Domain
Grid Convergence Study
5. Results
5.1. Effect of Cross Perturbation
5.2. Effect of Turbulence
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
KHI | Kelvin–Helmholtz Instability |
DNS | Direct Numerical Simulation |
PSD | Power Spectral Density |
References
- Helmholtz, H. On discontinuous movements of fluids. Phil. Mag. 1868, 36, 337–346. [Google Scholar] [CrossRef]
- Thorpe, S.A. Experiments on the instability of stratified shear flows: Immiscible fluids. J. Fluid Mech. 1969, 39, 25–48. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Oxford Uuniversity Press: Oxford, UK, 1961. [Google Scholar]
- Drazin, P.G. Introduction to Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Matas, J.P.; Marty, S.; Cartellier, A. Experimental and Analytical Study of the Shear Instability of a Gas-Liquid Mixing Layer. Phys. Fluids 2011, 23, 094112. [Google Scholar] [CrossRef]
- Praturi, D.S.; Girimaji, S.S. Magnetic-Internal-Kinetic Energy Interactions in High-Speed Turbulent Magnetohydrodynamic Jets. J. Fluids Eng. 2020, 142, 101213. [Google Scholar] [CrossRef]
- Özgen, S.; Degrez, G.; Sarma, G.S.R. Two-Fluid Boundary Layer Stability. Phys. Fluids 1998, 10, 2746–2757. [Google Scholar] [CrossRef]
- Sivadas, V.; Karthick, S.; Balaji, K. Symmetric and Asymmetric Disturbances in the Rayleigh Zone of an Air-Assisted Liquid Sheet: Theoretical and Experimental Analysis. J. Fluids Eng. 2020, 142, 071302. [Google Scholar] [CrossRef]
- Otto, T.; Rossi, M.; Boeck, T. Viscous Instability of a Sheared Liquid-Gas Interface: Dependence on Fluid Properties and Basic Velocity Profile. Phys. Fluids 2013, 25, 032103. [Google Scholar] [CrossRef]
- Obergaulinger, M.; Aloy, M. Numerical viscosity in simulations of the two- dimensional Kelvin-Helmholtz instability. In Proceedings of the 14th Numerical Modeling of Space Plasma Flows 2020, Paris, France, 1–5 July 2020; Volume 1623, p. 012018. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Wesfreid, J.E. Oscillatory Kelvin-Helmholtz instabiliy. Part 2. An experiment in fluids with a large viscosity contrast. J. Fluid Mech. 2011, 675, 249–267. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Altman, D.; Cantwell, B.J. Combustion of Liquefying Hybrid Propellants: Part 1, General Theory. J. Propuls. Power 2002, 18, 610–620. [Google Scholar] [CrossRef]
- Petrarolo, A.; Kobald, M.; Schlechtriem, S. Understanding Kelvin-Helmholtz Instability in Paraffin-Based Hybrid Rocket Fuels. Exp. Fluids 2018, 59, 62. [Google Scholar] [CrossRef]
- Petrarolo, A.; Kobald, M. On the Liquid Layer Instability Process in Hybrid Rocket Fuels. FirePhysChem 2021, 1, 244–250. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J. Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids. Eur. J. Mech. B Fluids 2015, 49, 77–88. [Google Scholar] [CrossRef]
- Atmakidis, T.; Kenig, E. A study on the Kelvin-Helmholtz instability using two different computational fluid dynamics methods. J. Comput. Multiph. Flows 2010, 2, 33–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, W.; Yao, M.; Dong, B.; Li, P. Effect of intermediate fluid layer on Kelvin-Helmholtz instability. Can. J. Phys. 2018, 96, 1145–1154. [Google Scholar] [CrossRef]
- Kazimardanov, M.; Mingalev, S.; Lubimova, T.; Gomzikov, L. Simulation of primary film atomization due to Kelvin-Helmholtz instability. J. Appl. Mech. Tech. Phys. 2018, 59, 1251–1260. [Google Scholar] [CrossRef]
- Agbaglah, G.; Chiodi, R.; Desjardins, O. Numerical Simulation of the Initial Destabilization of an Air-Blasted Liquid Layer. J. Fluid Mech. 2017, 812, 1024–1038. [Google Scholar] [CrossRef]
- Ling, Y.; Fuster, D.; Tryggvason, G.; Zaleski, S. A Two-Phase Mixing Layer between Parallel Gas and Liquid Streams: Multiphase Turbulence Statistics and Influence of Interfacial Instability. J. Fluid Mech. 2019, 859, 268–307. [Google Scholar] [CrossRef]
- Rogers, M.; Moser, R. The three-dimensional evolution of a plane mixing layer Part 1. The Kelvin-Helmholtz roll-up. In NASA Memorandum; NASA: Washington, DC, USA, 1991; pp. 1–90. [Google Scholar]
- Martinez, D.; Schettini, E.; Silvestrini, J. Secondary Kelvin-Helmholtz instability in a 3D stably stratified temporal mixing layer by direct numerical simulation. Mec. Comput. 2006, 25, 217–229. [Google Scholar]
- Soetrisno, M.; Eberhardt, D.; Riley, J.; Greenough, J. Confined compressible mixing layers: Part II. 3D Kelvin-Helmholtz-2D Kelvin Helmholtz Interactions. In Proceedings of the AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WA, USA, 18–20 June 1990; pp. 1–14. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Stern, F. High-fidelity simulations of bubble, droplet and spray formation in breaking wave. J. Fluid Mech. 2016, 792, 302–327. [Google Scholar] [CrossRef]
- Liu, C.L.; Kaminski, A.K.; Smyth, W.D. The Effects of Boundary Proximity on Kelvin-Helmholtz Instability and Turbulence. J. Fluid Mech. 2023, 966, A2. [Google Scholar] [CrossRef]
- Tian, C.; Chen, Y. Numerical Simulations of Kelvin-Helmholtz Instability: A Two-Dimensional Parametric Study. Astrophys. J. 2016, 824, 60. [Google Scholar] [CrossRef]
- Saad, T.; Cline, D.; Stoll, R.; Sutherland, J.C. Scalable Tools for Generating Synthetic Isotropic Turbulence with Arbitrary Spectra. AIAA J. 2017, 55, 327–331. [Google Scholar] [CrossRef]
- ABLATE Ablative Boundary Layers at The Exascale. 2021. Available online: https://ubchrest.github.io/ablate/ (accessed on 15 December 2023).
- Sementilli, M.L.; McGurn, M.T.; Chen, J. Scalable Compressible Volume of Fluid Solver Using a Stratified Flow Model. Int. J. Numer. Methods Fluids 2023, 95, 777–795. [Google Scholar] [CrossRef]
- Sementilli, M.L.; McGurn, M.; Chen, J.M. A Scalable Multiphase Flow Solver for Simulation of Hybrid Rocket Motors. In Proceedings of the AIAA SCITECH 2023 Forum 2023, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Tanarro, Á.; Vinuesa, R.; Schlatter, P. Power-Spectral Density in Turbulent Boundary Layers on Wings. In Proceedings of the Direct and Large Eddy Simulation XII, Madrid, Spain, 5–7 June 2019; Springer: Cham, Switzerland, 2020; pp. 11–16. [Google Scholar]
Case | Cells x, z | Cells y | |
---|---|---|---|
Coarse | 100 | 500 | 0.002 |
Medium | 150 | 750 | 0.0013 |
Fine | 180 | 900 | 0.0011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sementilli, M.; Zangeneh, R.; Chen, J. Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability. Fluids 2024, 9, 52. https://doi.org/10.3390/fluids9030052
Sementilli M, Zangeneh R, Chen J. Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability. Fluids. 2024; 9(3):52. https://doi.org/10.3390/fluids9030052
Chicago/Turabian StyleSementilli, Mae, Rozie Zangeneh, and James Chen. 2024. "Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability" Fluids 9, no. 3: 52. https://doi.org/10.3390/fluids9030052
APA StyleSementilli, M., Zangeneh, R., & Chen, J. (2024). Influence of Cross Perturbations on Turbulent Kelvin–Helmholtz Instability. Fluids, 9(3), 52. https://doi.org/10.3390/fluids9030052