Efficiency Improvement of Darrieus Wind Turbine Using Oscillating Gurney Flap
Abstract
:1. Introduction
2. Turbine Geometrical Parameters
3. Numerical Method and Turbulence Model
3.1. Governing Equations
3.2. Computational Domain and Motion Modeling:
- For the turbine blades:
- For the GF:
4. Results and Discussion
4.1. Mechanism of Turbine Performance Improvement
4.2. Effect of Motion Phase
4.3. Effect of GF Length
5. Conclusions
- The good synchronization of the oscillating gurney flap motion with the blade motion enhances the lift force and the output power.
- The highest amount of energy is extracted in the first quarter of the turbine and the phase angle should be selected so that the OGF is fully located on the blade’s upper surface.
- The Cm peak increases from 0.186 to 0.222 for all blades, which signifies an improvement of 19% in the average output power.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; AlMallahi, M.N.; Shehata, N.; Alami, A.H.; Mdallal, A.; Hassan, A.A.M.; Sayed, E.T. Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array. Sustainability 2023, 15, 4641. [Google Scholar] [CrossRef]
- Zereg, A.; Lebaal, N.; Aksas, M.; Derradji, B.; Chabani, I.; Mebarek-Oudina, F. CFD Analysis of a Vertical Axis Wind Turbine. In Mathematical Modelling of Fluid Dynamics and Nanofluids; CRC Press: Boca Raton, FL, USA, 2024; pp. 184–196. [Google Scholar]
- Zhao, Z.; Wang, D.; Wang, T.; Shen, W.; Liu, H.; Chen, M. A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine. Sustain. Energy Technol. Assess. 2022, 49, 101789. [Google Scholar] [CrossRef]
- Zereg, A.; Bouzaher, M.T.; Aksas, M.; Lebaal, N. Performance enhancement of Savonius wind turbine through partially deformable blades. Int. J. Simul. Multidiscip. Des. Optim. 2024, 15, 8. [Google Scholar] [CrossRef]
- Guo, J.; Zeng, P.; Lei, L. Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments. Energy 2019, 174, 553–561. [Google Scholar] [CrossRef]
- Zereg, A.; Lebaal, N.; Aksas, M.; Bassir, D. Numerical analysis and optimization of a vertical axis wind turbine with a flapped blade. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; Volume 2989. [Google Scholar]
- He, X.; Wang, J.J.; Yang, M.Q.; Ma, D.L.; Yan, C.; Liu, P.Q. Numerical simulation of gurney flaps lift-enhancement on a low reynolds number airfoil. Sci. China Technol. Sci. 2017, 60, 1548–1559. [Google Scholar] [CrossRef]
- Arfaoui, B.; Bouzaher, M.T.; Guerira, B.; Bensaci, C.E. On the performance of swing arm flapping turbines. J. Sol. Energy Eng. Trans. ASME 2021, 143. [Google Scholar] [CrossRef]
- Jain, S.; Sitaram, N.; Krishnaswamy, S. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics. Int. Sch. Res. Not. 2015, 2015, 402358. [Google Scholar] [CrossRef]
- Aihara, A.; Mendoza, V.; Goude, A.; Bernhoff, H. Comparison of Three-Dimensional Numerical Methods for Modeling of Strut Effect on the Performance of a Vertical Axis Wind Turbine. Energies 2022, 15, 2361. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.; Wang, X.; Li, N. Experimental Study of a Gurney Flap on a Pitching Wind Turbine Airfoil under Turbulent Flow Conditions. J. Mar. Sci. Eng. 2022, 10, 371. [Google Scholar] [CrossRef]
- Ni, L.; Miao, W.; Li, C.; Liu, Q. Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations. Energy 2021, 215, 118915. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Xie, Y.; Lv, K.; Sheng, R. Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil. Energy 2021, 225, 120206. [Google Scholar] [CrossRef]
- Shubham, J.; Sitaram, N.; Krishnaswamy, S. Effect of Reynolds number on aerodynamics of airfoil with Gurney flap. Int. J. Rotating Mach. 2015, 2015, 628632. [Google Scholar]
- Aubrun, S.; Leroy, A.; Devinant, P. A review of wind turbine-oriented active flow control strategies. Exp. Fluids 2017, 58, 134. [Google Scholar] [CrossRef]
- Liebeck, R.H. Design of subsonic airfoils for high lift. J. Aircr. 1978, 15, 547–561. [Google Scholar] [CrossRef]
- Gerontakos, P.; Lee, T. Dynamic stall flow control via a trailing-edge flap. AIAA J. 2006, 44, 469–480. [Google Scholar] [CrossRef]
- Giguère, P.; Lemay, J.; Dumas, G. Gurney flap effects and scaling for low-speed airfoils. In Proceedings of the 13th Applied Aerodynamics Conference, San Diego, CA, USA, 19–22 June 1995; pp. 966–976. [Google Scholar] [CrossRef]
- Pastrikakis, V.A.; Steijl, R.; Barakos, G.N.; Małecki, J. Computational aeroelastic analysis of a hovering W3 sokol blade with gurney flap. J. Fluids Struct. 2015, 53, 96–111. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Di Rosa, D.; Ferrara, G. On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines. Energy Convers. Manag. 2019, 184, 402–415. [Google Scholar] [CrossRef]
- Xiao, Q.; Liu, W.; Incecik, A. Flow control for VATT by fixed and oscillating flap. Renew. Energy 2013, 51, 141–152. [Google Scholar] [CrossRef]
- Feng, L.H.; Jukes, T.N.; Choi, K.S.; Wang, J.J. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp. Fluids 2012, 52, 1533–1546. [Google Scholar] [CrossRef]
- Syawitri, T.P.; Yao, Y.; Yao, J.; Chandra, B. Geometry optimisation of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios. Sustain. Energy Technol. Assess. 2022, 49, 101779. [Google Scholar] [CrossRef]
- Ismail, M.F.; Vijayaraghavan, K. The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Chen, H.; Qin, N. Trailing-edge flow control for wind turbine performance and load control. Renew. Energy 2017, 105, 419–435. [Google Scholar] [CrossRef]
- Mayda, E.A.; Van Dam, C.P.; Nakafuji, D.Y. Computational investigation of finite width microtabs for aerodynamic load control. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005; pp. 4541–4553. [Google Scholar]
- Bouzaher, M.T.; Drias, N.; Guerira, B. Improvement of Energy Extraction Efficiency for Flapping Airfoils by Using Oscillating Gurney Flaps. Arab. J. Sci. Eng. 2019, 44, 809–819. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Convers. Manag. 2018, 169, 45–77. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, W.; Li, C.; Ding, Q. Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap. J. Wind Eng. Ind. Aerodyn. 2019, 186, 17–31. [Google Scholar] [CrossRef]
- Castelli, M.R.; Englaro, A.; Benini, E. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 2011, 36, 4919–4934. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Li, G.; Huang, D.; Zheng, Z. Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renew. Energy 2018, 126, 801–818. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, B.; Zhang, W. New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices. Energy 2019, 189, 116072. [Google Scholar] [CrossRef]
- Zanotti, A.; Gibertini, G. Experimental assessment of an active L-shaped tab for dynamic stall control. J. Fluids Struct. 2018, 77, 151–169. [Google Scholar] [CrossRef]
Diameter (D) [mm] | 1030 |
Chord (C) [mm] | 85.5 |
Blade profile | NACA0021 |
Number of blades | 3 |
Solidity (σ) | 0.5 |
Spoke–blade connection | 0.33 |
Gurney flap pitching center | 0.33c |
Mesh Size | Cells | Nodes | Number of Points on Blades | Maximum y+ on Blades |
---|---|---|---|---|
Coarse | 602,905 | 301,455 | 1058 | 3.9 |
Medium | 1,151,103 | 582,406 | 2054 | 2.82 |
Fine | 2,014,430 | 1,013,386 | 3595 | 2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zereg, A.; Aksas, M.; Bouzaher, M.T.; Laghrouche, S.; Lebaal, N. Efficiency Improvement of Darrieus Wind Turbine Using Oscillating Gurney Flap. Fluids 2024, 9, 150. https://doi.org/10.3390/fluids9070150
Zereg A, Aksas M, Bouzaher MT, Laghrouche S, Lebaal N. Efficiency Improvement of Darrieus Wind Turbine Using Oscillating Gurney Flap. Fluids. 2024; 9(7):150. https://doi.org/10.3390/fluids9070150
Chicago/Turabian StyleZereg, Alaeddine, Mounir Aksas, Mohamed Taher Bouzaher, Salah Laghrouche, and Nadhir Lebaal. 2024. "Efficiency Improvement of Darrieus Wind Turbine Using Oscillating Gurney Flap" Fluids 9, no. 7: 150. https://doi.org/10.3390/fluids9070150
APA StyleZereg, A., Aksas, M., Bouzaher, M. T., Laghrouche, S., & Lebaal, N. (2024). Efficiency Improvement of Darrieus Wind Turbine Using Oscillating Gurney Flap. Fluids, 9(7), 150. https://doi.org/10.3390/fluids9070150