The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence
Abstract
:1. Introduction
1.1. Stratified Shear Turbulence
1.2. Direct Numerical Simulation (DNS) Solution
1.2.1. Initial and Boundary Conditions
1.2.2. Previous DNS Efforts and Utilization of Noise
1.2.3. Oceanographic Implications
2. Governing Equations and Numerical Methods
2.1. Wavelength Calculation
2.2. Model Setup for Domain Length Analysis
2.3. Model Setup for Noise Analysis
3. Domain Length Analysis
3.1. Determining CKH
3.2. Billow Formation
3.3. Billow Phase Duration
3.4. Turbulent Quantities
4. Noise Analysis
4.1. Effect of Varying Noise
4.2. Turbulence Quantities with Varying Random Field Realizations
5. Conclusions and Summary
- Noise should be used with caution in DNS runs because it can significantly alter the timing and magnitude of resulting turbulence in a manner that is difficult to predict.
- Adding any noise delays turbulence, thereby increasing the computational time by up to 30–40 percent.
- The noise amplitude has a minimum impact on overall turbulence quantities. The nature of the random field is much more important.
- Using different realizations of the field has a significant impact on the timing and magnitude of turbulence.
- Turbulent quantities associated with different random fields can vary by a factor of up to three to five.
- The natural Kelvin–Helmholtz billow wavelength is found to be consistent with , with determined from the numerical runs.
- Net production, dissipation, and buoyancy flux are approximately constant with the domain length as long as .
- Domain lengths that force a shorter billow wavelength also result in a shorter-duration billow phase.
- An additional billow forms, on average, for every increase in domain length by .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helmholtz, P. XLIII. on discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1868, 36, 337–346. [Google Scholar] [CrossRef]
- Kelvin, L.O.R.D. Hydrokinetic solutions and observations. Phil. Mag. 1871, 10, 155–168. [Google Scholar]
- Caulfield, C.-C.P. Open questions in turbulent stratified mixing: Do we even know what we do not know? Phys. Rev. Fluids 2020, 5, 110518. [Google Scholar] [CrossRef]
- De Silva, I.; Fernando, H.; Eaton, F.; Hebert, D. Evolution of Kelvin–Helmholtz billows in nature and laboratory. Earth Planet. Sci. Lett. 1996, 143, 217–231. [Google Scholar] [CrossRef]
- Blaauwgeers, R.; Eltsov, V.B.; Eska, G.; Finne, A.P.; Haley, R.P.; Krusius, M.; Ruohio, J.J.; Skrbek, L.; Volovik, G.E. Shear flow and Kelvin–Helmholtz instability in superfluids. Phys. Rev. Lett. 2002, 89, 155301. [Google Scholar] [CrossRef] [PubMed]
- Hebert, D.; Moum, J.; Paulson, C.; Caldwell, D. Turbulence and internal waves at the equator. Part II: Details of a single event. J. Phys. Oceanogr. 1992, 22, 1346–1356. [Google Scholar] [CrossRef]
- Moum, J.N.; Hebert, D.; Paulson, C.A.; Caldwell, D.R. Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr. 1992, 22, 1330–1345. [Google Scholar] [CrossRef]
- Dalin, P.; Pertsev, N.; Frandsen, S.; Hansen, O.; Andersen, H.; Dubietis, A.; Balciunas, R. A case study of the evolution of a Kelvin–Helmholtz wave and turbulence in noctilucent clouds. J. Atmos.-Sol.-Terr. Phys. 2010, 72, 1129–1138. [Google Scholar] [CrossRef]
- Bau, H.H. Kelvin–Helmholtz instability for parallel flow in porous media: A linear theory. Phys. Fluids 1982, 25, 1719–1722. [Google Scholar] [CrossRef]
- Ong, R.S.B.; Roderick, N. On the Kelvin–Helmholtz instability of the earth’s magnetopause. Phys. Fluids 1982, 25, 1–10. [Google Scholar] [CrossRef]
- Smyth, W.D. Smyth, Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J. Fluid Mech. 2003, 497, 67–98. [Google Scholar] [CrossRef]
- Mashayek, A.; Peltier, W. The zoo of secondary instabilities precursory to stratified shear flow transition. Part 1 shear aligned convection, pairing, and braid instabilities. J. Fluid Mech. 2012, 708, 5–44. [Google Scholar] [CrossRef]
- Caulfield, C. Layering, Instabilities, and Mixing in Turbulent Stratified Flows. Annu. Rev. Fluid Mech. 2021, 53, 113–145. [Google Scholar] [CrossRef]
- Van Haren, H.; Gostiaux, L. A deep ocean Kelvin–Helmholtz billow train. Geophys. Res. Lett. 2010, 37, L03605. [Google Scholar] [CrossRef]
- MacDonald, D.G.; Carlson, J.; Goodman, L. On the heterogeneity of stratified-shear turbulence: Observations from a near-field river plume. J. Geophys. Res. Oceans 2013, 118, 6223–6237. [Google Scholar] [CrossRef]
- Maslowe, S. The generation of clear air turbulence by nonlinear waves. Stud. Appl. Math. 1972, 51, 1–16. [Google Scholar] [CrossRef]
- Kelly, R.; Maslowe, S. The nonlinear critical layer in a slightly stratified shear flow. Stud. Appl. Math. 1970, 49, 301–326. [Google Scholar] [CrossRef]
- Drazin, P. Kelvin–Helmholtz instability of finite amplitude. J. Fluid Mech. 1970, 42, 321–335. [Google Scholar] [CrossRef]
- Klaassen, G.P.; Peltier, W.R. Evolution of finite amplitude Kelvin–Helmholtz billows in two spatial dimensions. J. Atmos. Sci. 1985, 42, 1321–1339. [Google Scholar] [CrossRef]
- Patnaik, P.C.; Sherman, F.S.; Corcos, G.M. A numerical simulation of Kelvin–Helmholtz waves of finite amplitude. J. Fluid Mech. 1976, 73, 215–240. [Google Scholar] [CrossRef]
- Miles, J.W.; Howard, L.N. Note on a heterogeneous shear flow. J. Fluid Mech. 1964, 20, 331–336. [Google Scholar] [CrossRef]
- Drazin, P.; Howard, L. Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 1966, 9, 1–89. [Google Scholar]
- Turner, J.S. Buoyancy Effects in Fluids; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Tennekes, H.; Lumley, J.L. Lumley, A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Gayen, B.; Sarkar, S. Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids 2011, 23, 101703. [Google Scholar] [CrossRef]
- Burchard, H.; Bolding, K. Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr. 2001, 31, 1943–1968. [Google Scholar] [CrossRef]
- Staquet, C. Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid Mech. 1995, 296, 73–126. [Google Scholar] [CrossRef]
- Salehipour, H.; Caulfield, C.P.; Peltier, W.R. Turbulent mixing due to the holmboe wave instability at high Reynolds number. J. Fluid Mech. 2016, 803, 591–621. [Google Scholar] [CrossRef]
- Liu, C.-L.; Kaminski, A.K.; Smyth, W.D. Turbulence and mixing from neighbouring stratified shear layers. J. Fluid Mech. 2024, 987, A8. [Google Scholar] [CrossRef]
- Liu, C.-L.; Kaminski, A.K.; Smyth, W.D. The effects of boundary proximity on Kelvin–Helmholtz instability and turbulence. J. Fluid Mech. 2023, 966, A2. [Google Scholar] [CrossRef]
- Liu, C.-L.; Kaminski, A.K.; Smyth, W.D. The butterfly effect and the transition to turbulence in a stratified shear layer. J. Fluid Mech. 2022, 953, A43. [Google Scholar] [CrossRef]
- Yang, A.J.K.; Timmermans, M.-L.; Lawrence, G.A. Asymmetric Kelvin-Helmholtz instabilities in stratified shear flows. Phys. Rev. Fluids 2024, 9, 14501. [Google Scholar] [CrossRef]
- Yang, A.J.K.; Tedford, E.W.; Olsthoorn, J.; Lawrence, G.A. Sensitivity of wave merging and mixing to initial perturbations in Holmboe instabilities. Phys. Fluids 2022, 34, 126610. [Google Scholar] [CrossRef]
- VanDine, A.; Pham, H.T.; Sarkar, S. Turbulent shear layers in a uniformly stratified background: DNS at high Reynolds number. J. Fluid Mech. 2021, 916, A42. [Google Scholar] [CrossRef]
- Smyth, W.D.; Moum, J.N. Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids 2000, 12, 1343–1362. [Google Scholar] [CrossRef]
- Rahmani, M. Kelvin–Helmholtz Instabilities in Sheared Density Stratified Flows. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2011. [Google Scholar]
- Kaminski, A.K.; Smyth, W.D. Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech. 2019, 862, 639–658. [Google Scholar] [CrossRef]
- Smyth, W.D.; Moum, J.N. Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 2000, 12, 1327–1342. [Google Scholar] [CrossRef]
- Caulfield, C.; Peltier, W. The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech. 2000, 413, 1–47. [Google Scholar] [CrossRef]
- Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H. High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 2008, 227, 7125–7159. [Google Scholar] [CrossRef]
- Pierce, C.D.; Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 2004, 504, 73–97. [Google Scholar] [CrossRef]
- Kim, J.; Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 1985, 59, 308–323. [Google Scholar] [CrossRef]
- Van der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die Partiellen differenzengleichungen der mathematischen physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Hazel, P. Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 1972, 51, 39–61. [Google Scholar] [CrossRef]
- Smyth, W.; Peltier, W. The transition between Kelvin–Helmholtz and Holmboe instability: An investigation of the overreflection hypothesis. J. Atmos. Sci. 1989, 46, 3698–3720. [Google Scholar] [CrossRef]
- MacDonald, D.G.; Chen, F. Role of mixing in the structure and evolution of a buoyant discharge plume. J. Geophys. Res. Oceans 2006, 111, C11002. [Google Scholar]
- Barringer, M.; Price, J. Mixing and spreading of the mediterranean overflow. J. Phys. Oceanogr. 1997, 27, 1654–1677. [Google Scholar] [CrossRef]
- Dong, W.; Tedford, E.W.; Rahmani, M.; Lawrence, G.A. Lawrence, Sensitivity of vortex pairing and mixing to initial perturbations in stratified shear flows. Phys. Rev. Fluids 2019, 4, 063902. [Google Scholar] [CrossRef]
- Brucker, K.A.; Sarkar, S. A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech. 2010, 652, 373–404. [Google Scholar] [CrossRef]
2 | 0.67 | 0.40 | 200 | 0.01 |
2.49 | 0.84 | 0.50 | 256 | 0.0097 |
3.25 | 1.09 | 0.65 | 318 | 0.0102 |
3.98 | 1.33 | 0.80 | 392 | 0.0101 |
4.22 | 1.42 | 0.85 | 416 | 0.0101 |
4.48 | 1.50 | 0.90 | 448 | 0.01 |
4.97 | 1.67 | 1.00 | 488 | 0.0102 |
5.24 | 1.76 | 1.05 | 512 | 0.0102 |
6.21 | 2.08 | 1.25 | 600 | 0.0104 |
7.46 | 2.50 | 1.50 | 736 | 0.0101 |
8.7 | 2.92 | 1.75 | 848 | 0.0103 |
9.94 | 3.33 | 2.00 | 968 | 0.0103 |
11.18 | 3.75 | 2.25 | 1104 | 0.0101 |
Flux Richardson Number | Mixing Efficiency | ∫Production | ∫Buoyancy Flux | ∫Dissipation | Start Time | End Time | |
---|---|---|---|---|---|---|---|
0.67 | 0.13 | 0.1 | 1.94 × | 2.03 × | 1.56 × | 2.34 | 8.61 |
0.84 | 0.16 | 0.13 | 7.05 × | 9.22 × | 5.50 × | 2.34 | 8.58 |
1.09 | 0.28 | 0.2 | 1.95 × | 3.93 × | 1.38 × | 2.34 | 8.61 |
1.33 | 0.28 | 0.2 | 1.92 × | 3.86 × | 1.36 × | 4.21 | 10.52 |
1.42 | 0.32 | 0.22 | 2.13 × | 4.79 × | 1.48 × | 2.14 | 4.25 |
1.50 | 0.29 | 0.2 | 2.05 × | 4.21 × | 1.44 × | 1.60 | 6.59 |
1.67 | 0.24 | 0.17 | 1.28 × | 2.29 × | 9.42 × | 2.34 | 9.00 |
1.76 | 0.23 | 0.17 | 1.33 × | 2.36 × | 9.87 × | 2.34 | 9.20 |
2.08 | 0.26 | 0.19 | 1.28 × | 2.46 × | 9.28 × | 2.46 | 9.55 |
2.50 | 0.22 | 0.16 | 1.29 × | 2.15 × | 9.62 × | 2.46 | 8.07 |
2.92 | 0.25 | 0.18 | 1.41 × | 2.65 × | 1.04 × | 1.29 | 8.69 |
3.33 | 0.26 | 0.19 | 1.46 × | 2.80 × | 1.07 × | 2.81 | 9.74 |
3.75 | 0.23 | 0.17 | 1.35 × | 2.34 × | 9.94 × | 2.38 | 8.46 |
a | Flux Richardson Number | Mixing Efficiency | ∫Production | ∫Buoyancy Flux | ∫Dissipation | Start Time | End Time |
---|---|---|---|---|---|---|---|
0 | 0.17 | 0.239 | 1.33 × | 2.36 × | 9.87 × | 4.52 | 21 |
0.001 | 0.14 | 0.177 | 8.94 × | 1.24 × | 6.98 × | 5.65 | 22.8 |
0.005 | 0.14 | 0.173 | 8.15 × | 1.10 × | 6.44 × | 5.61 | 22.7 |
0.01 | 0.14 | 0.187 | 8.58 × | 1.24 × | 6.65 × | 5.72 | 22.6 |
0.05 | 0.16 | 0.207 | 4.78 × | 5.86 × | 3.71 × | 6.04 | 22.5 |
Random Field | Noise Amplitude, a | Flux Richardson Number | Mixing Efficiency | ∫Production | ∫Buoyancy Flux | ∫Dissipation | Start Time |
---|---|---|---|---|---|---|---|
0 | 0 | 0.17 | 0.239 | 1.33 × | 2.36 × | 9.87 × | 4.52 |
RF-1 | 0.01 | 0.19 | 0.261 | 1.40 × | 2.67 × | 1.02 × | 5.57 |
RF-2 | 0.01 | 0.14 | 0.185 | 8.58 × | 1.24 × | 6.65 × | 5.73 |
RF-3 | 0.01 | 0.12 | 0.158 | 4.91 × | 5.46 × | 4.00 × | 6.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, V.; MacDonald, D.; Raessi, M. The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence. Fluids 2024, 9, 171. https://doi.org/10.3390/fluids9080171
Palma V, MacDonald D, Raessi M. The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence. Fluids. 2024; 9(8):171. https://doi.org/10.3390/fluids9080171
Chicago/Turabian StylePalma, Vashkar, Daniel MacDonald, and Mehdi Raessi. 2024. "The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence" Fluids 9, no. 8: 171. https://doi.org/10.3390/fluids9080171
APA StylePalma, V., MacDonald, D., & Raessi, M. (2024). The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence. Fluids, 9(8), 171. https://doi.org/10.3390/fluids9080171