Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery
Abstract
:1. Novel Gene Expression Analysis Technologies for Biomarkers Discovery
2. Gene Expression Profiling of Rheumatic Diseases: Focus on RA
3. The Identification of mRNA, LncRNAs, and miRNAs as Biomarkers in RA
4. Implications and Perspective of Clinical Applicability in RA
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Koboldt, D.C.; Steinberg, K.M.; Larson, D.E.; Wilson, R.K.; Mardis, E.R. The next-generation sequencing revolution and its impact on genomics. Cell 2013, 155, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Gharizadeh, B.; Yue, J.; Yu, M.; Liu, Y.; Zhou, M.; Lu, D.; Zhang, J. Navigating the pandemic response life cycle: Molecular diagnostics and immunoassays in the context of COVID-19 management. IEEE Rev. Biomed. Eng. 2020, 14, 30–47. [Google Scholar] [CrossRef]
- Sachinidis, A.; Garyfallos, A. Double Negative (DN) B cells: A connecting bridge between rheumatic diseases and COVID-19? Mediterr. J. Rheumatol. 2021, 32, 192. [Google Scholar] [CrossRef]
- Macías-Segura, N.; Castañeda-Delgado, J.E.; Bastian, Y.; Santiago-Algarra, D.; Castillo-Ortíz, J.D.; Aleman-Navarro, A.L.; Jaime-Sánchez, E.; Gomez-Moreno, M.; Saucedo-Toral, C.; Lara-Ramírez, E.E. Transcriptional signature associated with early rheumatoid arthritis and healthy individuals at high risk to develop the disease. PLoS ONE 2018, 13, e0194205. [Google Scholar] [CrossRef]
- Wainberg, M.; Sinnott-Armstrong, N.; Mancuso, N.; Barbeira, A.N.; Knowles, D.A.; Golan, D.; Ermel, R.; Ruusalepp, A.; Quertermous, T.; Hao, K. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 2019, 51, 592–599. [Google Scholar] [CrossRef]
- Plant, D.; Maciejewski, M.; Smith, S.; Nair, N.; Maximising Therapeutic Utility in Rheumatoid Arthritis Consortium, the RAMS Study Group; Hyrich, K.; Ziemek, D.; Barton, A.; Verstappen, S. Profiling of gene expression biomarkers as a classifier of methotrexate nonresponse in patients with rheumatoid arthritis. Arthritis Rheumatol. 2019, 71, 678–684. [Google Scholar] [CrossRef]
- Romo-García, M.; Bastian, Y.; Zapata-Zuñiga, M.; Macías-Segura, N.; Castillo-Ortiz, J.; Lara-Ramírez, E.; Fernández-Ruiz, J.; Berlanga-Taylor, A.; González-Amaro, R.; Ramos-Remus, C. Identification of putative miRNA biomarkers in early rheumatoid arthritis by genome-wide microarray profiling: A pilot study. Gene 2019, 720, 144081. [Google Scholar] [CrossRef]
- Li, W.C.; Bai, D.L.; Xu, Y.; Chen, H.; Ma, R.; Hou, W.B.; Xu, R.J. Identification of differentially expressed genes in synovial tissue of rheumatoid arthritis and osteoarthritis in patients. J. Cell. Biochem. 2019, 120, 4533–4544. [Google Scholar] [CrossRef]
- Ashton, M.P.; Eugster, A.; Dietz, S.; Loebel, D.; Lindner, A.; Kuehn, D.; Taranko, A.E.; Heschel, B.; Gavrisan, A.; Ziegler, A.G. Association of Dendritic Cell Signatures With Autoimmune Inflammation Revealed by Single-Cell Profiling. Arthritis Rheumatol. 2019, 71, 817–828. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, S.; Yu, L.; Qu, B.; Xu, L.; Liu, L.; Sun, H.; Li, C.; Shi, Y.; Liu, H. Long noncoding RNA profiling revealed differentially expressed lncRNAs associated with disease activity in PBMCs from patients with rheumatoid arthritis. PLoS ONE 2017, 12, e0186795. [Google Scholar] [CrossRef] [Green Version]
- Romo-García, M.F.; Nava-Ramírez, H.S.; Zapata-Zúñiga, M.; Macías-Segura, N.; Santiago-Algarra, D.; Castillo-Ortiz, J.D.; Bastián, Y.; Ramos-Remus, C.; Enciso-Moreno, J.A.; Castañeda-Delgado, J.E. Evaluation of SUMO1 and POU2AF1 in whole blood from rheumatoid arthritis patients and at risk relatives. Int. J. Immunogenet. 2019, 46, 59–66. [Google Scholar] [CrossRef]
- Burgers, L.E.; Raza, K.; Van Der Helm-Van, A.H. Window of opportunity in rheumatoid arthritis–definitions and supporting evidence: From old to new perspectives. RMD Open 2019, 5, e000870. [Google Scholar] [CrossRef] [Green Version]
- Pratt, A.G.; Swan, D.C.; Richardson, S.; Wilson, G.; Hilkens, C.M.; Young, D.A.; Isaacs, J.D. A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-negative disease. Ann. Rheum. Dis. 2012, 71, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Yang, X.; Wang, J.; Han, L.; Yang, A.; Zhang, J.; Zhang, D.; Li, B.; Li, Z.; Xiong, Y. Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome-wide gene expression profiling analysis. Mol. Med. Rep. 2019, 19, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Chen, X.; Wu, H.; Du, Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J. Transl. Med. 2021, 19, 18. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, S.; Wang, R.; Tang, C.; Zhu, J.; Li, J. CCL5 and related genes might be the potential diagnostic biomarkers for the therapeutic strategies of rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 2629–2635. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, J.C.; Ramos-Remus, C.; Sánchez-Corona, J.; Castillo-Ortiz, J.D.; Castaneda-Sanchez, J.J.; Bastian, Y.; Romo-Garcia, M.F.; Ochoa-González, F.; Monsivais-Urenda, A.E.; González-Amaro, R. Analysis of miRNA expression in patients with rheumatoid arthritis during remission and relapse after a 5-year trial of tofacitinib treatment. Int. Immunopharmacol. 2018, 63, 35–42. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, J.; Fu, B.; Zhang, L.; Guo, Y.; Huang, Z.; Li, J. Circular RNAs Hsa_circ_0002715 and Hsa_circ_0035197 in Peripheral Blood Are Novel Potential Biomarkers for New-Onset Rheumatoid Arthritis. Dis. Markers 2019, 2019, 2073139. [Google Scholar] [CrossRef]
- Castañeda-Delgado, J.E.; Bastián-Hernandez, Y.; Macias-Segura, N.; Santiago-Algarra, D.; Castillo-Ortiz, J.D.; Alemán-Navarro, A.L.; Martínez-Tejada, P.; Enciso-Moreno, L.; Lira, G.-D.; Olguín-Calderón, D. Type I interferon gene response is increased in early and established rheumatoid arthritis and correlates with autoantibody production. Front. Immunol. 2017, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Wright, H.L.; Cox, T.; Moots, R.J.; Edwards, S.W. Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis. J. Leukoc. Biol. 2017, 101, 785–795. [Google Scholar] [CrossRef]
- Da Silva, R.G.L.; Chammas, R.; Novaes, H.M.D. Rethinking approaches of science, technology, and innovation in healthcare during the COVID-19 pandemic: The challenge of translating knowledge infrastructures to public needs. Health Res. Policy Syst. 2021, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Dodds, K.; Broto, V.C.; Detterbeck, K.; Jones, M.; Mamadouh, V.; Ramutsindela, M.; Varsanyi, M.; Wachsmuth, D.; Woon, C.Y. The COVID-19 pandemic: Territorial, political and governance dimensions of the crisis. Territ. Politics Gov. 2020, 8, 289–298. [Google Scholar] [CrossRef]
- Ascencio-Carbajal, T.; Saruwatari-Zavala, G.; Navarro-Garcia, F.; Frixione, E. Genetic/genomic testing: Defining the parameters for ethical, legal and social implications (ELSI). BMC Med. Ethics 2021, 22, 156. [Google Scholar] [CrossRef]
- Marchant, G.; Barnes, M.; Evans, J.P.; LeRoy, B.; Wolf, S.M. From genetics to genomics: Facing the liability implications in clinical care. J. Law Med. Ethics 2020, 48, 11–43. [Google Scholar] [CrossRef]
Reference | Technology | Group(s) | Tissue Sample | Key Findings | Clinical Use |
---|---|---|---|---|---|
[14] | Microarray | RA vs OA | Synovium | Candidate biomarkers used together: IL7R + STAT1 (93.94% Sens; 80.77% Spec) | Diagnostic |
[15] | Microarray | RA (early and stablished) vs OA | Synovium | Three candidate biomarkers accordingly to their AUC: GZMA (0.906), PRC1 (0.809) and TTK (0.793) | Diagnostic |
[16] | Microarray | RA vs HC | Synovium | Gene modules characterized by the gene expression of CCL5, CCL6, CCL9, CCL10, CCL13, and ADCY2 are potential BM for RA diagnosis | Diagnostic |
[4] | Microarray | RA vs FDR | Whole blood | Gene expression profiles associated with RA in high risk relatives, and gene expression of BCL2, SERPINB9, MS4A1, ETS1, EGR1, CX3CL1 and MEF2A are potential BM for RA diagnostic | Diagnostic |
[6] | Microarray | RA responders to MTX vs RA nonresponders to MTX | Whole blood | Theoretical model was able to detect ~50% of nonresponders at the expense of a false negative rate of ~20% | Treatment response |
[17] | Firefly miRNA detection | Response to tofacitinib treatment | plasma | miRNA signature detection in plasma samples associated with clinical remission or RA flare | Treatment response |
[7] | miRNA Microarray | Early RA detection | Whole blood | Identification of early RA cases is possible due to a massive expression of miRNAs in the early phases of disease | Diagnostic |
[10] | LncRNAsMicroarray | RA detection | PBMCs | Identification of the transcriptional patterns of expression associated with disease. Among these LncRNAs ENST00000456270 and NR_002838 are promising | Diagnostic |
Biomarker | AUC | P | % Sensitivity | % Specificity | Reference |
---|---|---|---|---|---|
PCNT | 0.742 | <0.0001 | 71.20% | 68.60% | [18] |
AFF2 | 0.709 | 0.0007 | 50.90% | 88.60% | |
SIAE | 0.713 | 0.0006 | 54.20% | 82.90% | |
RSAD2 | 0.75 | 0.044 | 75.00% | 100.00% | [19,20] |
LY6E | 0.69 | 0.0581 | 50.00% | 100.00% | |
IFI6 | 0.71 | 0.0832 | 62.50% | 100.00% | [20] |
0.82 | 0.005 | 70.00% | 94.74% | [4] | |
WIF1 | 0.92 | 0.001 | 87.50% | 92.86% | [4] |
MXA | 0.81 | 0.005 | 80.00% | 80.00% | |
SOSTDC1 | 0.93 | <0.001 | 87.50% | 92.86% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Delgado, J.E.; Macias-Segura, N.; Ramos-Remus, C. Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery. Non-Coding RNA 2022, 8, 35. https://doi.org/10.3390/ncrna8030035
Castañeda-Delgado JE, Macias-Segura N, Ramos-Remus C. Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery. Non-Coding RNA. 2022; 8(3):35. https://doi.org/10.3390/ncrna8030035
Chicago/Turabian StyleCastañeda-Delgado, Julio Enrique, Noé Macias-Segura, and Cesar Ramos-Remus. 2022. "Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery" Non-Coding RNA 8, no. 3: 35. https://doi.org/10.3390/ncrna8030035
APA StyleCastañeda-Delgado, J. E., Macias-Segura, N., & Ramos-Remus, C. (2022). Non-Coding RNAs in Rheumatoid Arthritis: Implications for Biomarker Discovery. Non-Coding RNA, 8(3), 35. https://doi.org/10.3390/ncrna8030035