Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Targeted Pathways of miR-71
2.1.1. Argonaute
2.1.2. Insulin Signaling
2.1.3. Development and Cell Signaling
2.1.4. Innate Immunity and Pathogenicity
2.1.5. Environmental Stressors
2.2. Sequence Analysis
3. Discussion
4. Material and Methods
4.1. Search Strategy and Selection
4.2. Data Collection and Analysis
4.3. Conservation of miR-71
4.4. Ethical Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Genomics Biogenesis Mechanism and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Walker, G.A.; Lithgow, G.J. Lifespan Extension in C. Elegans by a Molecular Chaperone Dependent upon Insulin-like Signals. Aging Cell 2003, 2, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human MicroRNAs Are Processed from Capped Polyadenylated Transcripts That Can Also Function as MRNAs. RNA 2004, 10, 1957–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of Small RNAs in Animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis Mechanisms of Actions and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-Nucleotide Let-7 RNA Regulates Developmental Timing in Caenorhabditis Elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Kim, D.h.; Grün, D.; van Oudenaarden, A. Dampening of Expression Oscillations by Synchronous Regulation of a MicroRNA and Its Target. Nat. Genet. 2013, 45, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Macchiaroli, N.; Maldonado, L.L.; Zarowiecki, M.; Cucher, M.; Gismondi, M.I.; Kamenetzky, L.; Rosenzvit, M.C. Genome-Wide Identification of MicroRNA Targets in the Neglected Disease Pathogens of the Genus Echinococcus. Mol. Biochem. Parasitol. 2017, 214, 91–100. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021, 10, 2415. [Google Scholar] [CrossRef]
- Marini, F.; Brandi, M.L. Role of MiR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int. J. Mol. Sci. 2021, 22, 7352. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of MiRNAs on Target Genes and Critical MiRNAs in Cancers. Front. Genet. 2020, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318, 1931–1934. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.I.A.; Truesdell, S.S.; Lee, S.; Kollu, S.; Classon, A.; Boukhali, M.; Jain, E.; Mortensen, R.D.; Yanagiya, A.; Sadreyev, R.I.; et al. A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol. Cell 2016, 61, 760–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inukai, S.; Pincus, Z.; de Lencastre, A.; Slack, F.J. A MicroRNA Feedback Loop Regulates Global MicroRNA Abundance during Aging. RNA 2018, 24, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.P.; Lau, N.C.; Weinstein, E.G.; Abdelhakim, A.; Yekta, S.; Rhoades, M.W.; Burge, C.B.; Bartel, D.P. The MicroRNAs of Caenorhabditis elegans. Genes Dev. 2003, 17, 991–1008. [Google Scholar] [CrossRef] [Green Version]
- de Lencastre, A.; Pincus, Z.; Zhou, K.; Kato, M.; Lee, S.S.; Slack, F.J. MicroRNAs Both Promote and Antagonize Longevity in C. elegans. Curr. Biol. 2010, 20, 2159–2168. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Guo, X.; He, W.; Shao, Z.; Zhang, X.; Yang, J.; Shen, Y.; Luo, X.; Cao, J. Effects of Echinococcus multilocularis MiR-71 Mimics on Murine Macrophage RAW264.7 Cells. Int. Immunopharmacol. 2016, 34, 259–262. [Google Scholar] [CrossRef]
- Theil, K.; Imami, K.; Rajewsky, N. Identification of Proteins and MiRNAs That Specifically Bind an MRNA In Vivo. Nat. Commun. 2019, 10, 4205. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, C.A.; Palmer, A.J.; Zuryn, S. Cell-Type-Specific Profiling of Loaded MiRNAs from Caenorhabditis elegans Reveals Spatial and Temporal Flexibility in Argonaute Loading. Nat. Commun. 2021, 12, 2194. [Google Scholar] [CrossRef]
- Aalto, A.P.; Nicastro, I.A.; Broughton, J.P.; Chipman, L.B.; Schreiner, W.P.; Chen, J.S.; Pasquinelli, A.E. Opposing Roles of MicroRNA Argonautes during Caenorhabditis elegans Aging. PLoS Genet. 2018, 14, e1007379. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Qi, L.; Zhang, T.; Wang, H. Understanding MicroRNA Regulation Involved in the Metamorphosis of the Veined Rapa Whelk (Rapana venosa). G3 Genes Genomes Genet. 2017, 7, 3999–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Nie, H.; Yin, Z.; Zhang, Y.; Huo, Z.; Yan, X. MiRNA-MRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila Clam (Ruditapes philippinarum). Mar. Biotechnol. 2021, 23, 976–993. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, Y.; Jiang, F.; Song, T.; Wang, H.; Liu, Q.; Zhang, J.; Zhang, J.; Kang, L. MiR-71 and MiR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genet. 2016, 12, e1006257. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Wang, J.; Zhu, S.; Hu, C.; Lin, Y.; Pan, W. Identification of a Schistosoma japonicum MicroRNA That Suppresses Hepatoma Cell Growth and Migration by Targeting Host FZD4 Gene. Front. Cell Infect. Microbiol. 2022, 12, 786543. [Google Scholar] [CrossRef]
- Pérez, M.G.; Spiliotis, M.; Rego, N.; Macchiaroli, N.; Kamenetzky, L.; Holroyd, N.; Cucher, M.A.; Brehm, K.; Rosenzvit, M.C. Deciphering the Role of MiR-71 in Echinococcus multilocularis Early Development In Vitro. PLoS Negl. Trop. Dis. 2019, 13, e0007932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhang, X.; Yang, J.; Jin, X.; Ding, J.; Xiang, H.; Ayaz, M.; Luo, X.; Zheng, Y. Suppression of Nemo-like Kinase by MiR-71 in Echinococcus multilocularis. Exp. Parasitol. 2017, 183, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-W.; Chang, C.; Chuang, C.-F. The MicroRNA Mir-71 Inhibits Calcium Signaling by Targeting the TIR-1/Sarm1 Adaptor Protein to Control Stochastic L/R Neuronal Asymmetry in C. elegans. PLoS Genet. 2012, 8, e1002864. [Google Scholar] [CrossRef] [Green Version]
- Finger, F.; Ottens, F.; Springhorn, A.; Drexel, T.; Proksch, L.; Metz, S.; Cochella, L.; Hoppe, T. Olfaction Regulates Organismal Proteostasis and Longevity via MicroRNA-Dependent Signaling. Nat. Metab. 2019, 1, 350–359. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, Y.; Zou, F.; Liu, B.; Tian, M.; Ye, W.; Guo, J.; Sun, X.; Zhou, D.; Sun, Y.; et al. The Role of MiR-2∼13∼71 Cluster in Resistance to Deltamethrin in Culex pipiens pallens. Insect Biochem. Mol. Biol. 2017, 84, 15–22. [Google Scholar] [CrossRef]
- Hong, S.; Guo, Q.; Wang, W.; Hu, S.; Fang, F.; Lv, Y.; Yu, J.; Zou, F.; Lei, Z.; Ma, K.; et al. Identification of Differentially Expressed MicroRNAs in Culex pipiens and Their Potential Roles in Pyrethroid Resistance. Insect Biochem. Mol. Biol. 2014, 55, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Zhang, Z.; Jin, L.; Zhu, Y.; Zhao, L.; Shi, B.; Li, J.; Guo, G.; Guo, B.; McManus, D.P.; et al. Dynamic Changes in the Global Transcriptome and MicroRNAome Reveal Complex MiRNA-MRNA Regulation in Early Stages of the Bi-Directional Development of Echinococcus granulosus Protoscoleces. Front. Microbiol. 2020, 11, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zeng, A.; Han, X.-S.; Li, G.; Li, Y.-Q.; Shen, B.; Jing, Q. Small RNAome Sequencing Delineates the Small RNA Landscape of Pluripotent Adult Stem Cells in the Planarian Schmidtea mediterranea. Genom. Data 2017, 14, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Smith-Vikos, T.; de Lencastre, A.; Inukai, S.; Shlomchik, M.; Holtrup, B.; Slack, F.J. MicroRNAs Mediate Dietary-Restriction-Induced Longevity through PHA-4/FOXA and SKN-1/Nrf Transcription Factors. Curr. Biol. 2014, 24, 2238–2246. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; McKinney, G.J.; Nichols, K.M.; Colbourne, J.K.; Sepúlveda, M.S. Novel Cadmium Responsive MicroRNAs in Daphnia pulex. Environ. Sci. Technol. 2015, 49, 14605–14613. [Google Scholar] [CrossRef]
- He, Y.; Sun, Y.; Zhang, X. Noncoding MiRNAs Bridge Virus Infection and Host Autophagy in Shrimp In Vivo. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 2854–2868. [Google Scholar] [CrossRef] [Green Version]
- Soichot, J.; Guttmann, N.; Rehrauer, H.; Joller, N.; Tritten, L. Nematode MicroRNAs Can Individually Regulate Interferon Regulatory Factor 4 and MTOR in Differentiating T Helper 2 Lymphocytes and Modulate Cytokine Production in Macrophages. Front. Mol. Biosci. 2022, 9, 909312. [Google Scholar] [CrossRef]
- Ou, J.; Chen, H.; Luan, X.; Ju, R.; Sun, Y.; Zhang, B.; Bian, Y.; Meng, Y.; Ji, H.; Wang, Z.; et al. Leveraging LncRNA-MiRNA-MRNA Network to Reveal Anti-Spiroplasma eriocheiris Infection Mechanisms in Macrobrachium nipponense. Aquaculture 2022, 557, 738286. [Google Scholar] [CrossRef]
- Singh, C.P. In Vitro Treatment of Seroin Proteins to BmNPV Budded Virions Suppresses Viral Proliferation in Bombyx mori Larvae and Ectopic Overexpression of Host-MiRNAs Downregulates the Expression of Seroin2 MRNA in BmN Cells. Int. J. Trop. Insect Sci. 2021, 41, 1485–1491. [Google Scholar] [CrossRef]
- Boulias, K.; Horvitz, H.R. The C. elegans MicroRNA Mir-71 Acts in Neurons to Promote Germline-Mediated Longevity through Regulation of DAF-16/FOXO. Cell Metab. 2012, 15, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zabinsky, R.; Teng, Y.; Cui, M.; Han, M. MicroRNAs Play Critical Roles in the Survival and Recovery of Caenorhabditis elegans from Starvation-Induced L1 Diapause. Proc. Natl. Acad. Sci. USA 2011, 108, 17997–18002. [Google Scholar] [CrossRef]
- Ruediger, C.; Karimzadegan, S.; Lin, S.; Shapira, M. MiR-71 Mediates Age-Dependent Opposing Contributions of the Stress-Activated Kinase KGB-1 in Caenorhabditis elegans. Genetics 2021, 218, iyab049. [Google Scholar] [CrossRef]
- Müller, M.; Fazi, F.; Ciaudo, C. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front. Cell Dev. Biol. 2020, 7, 360. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, K. Anatomy of Four Human Argonaute Proteins. Nucleic Acids Res. 2022, 50, 6618–6638. [Google Scholar] [CrossRef]
- Pincus, Z.; Smith-Vikos, T.; Slack, F.J. MicroRNA Predictors of Longevity in Caenorhabditis elegans. PLoS Genet. 2011, 7, e1002306. [Google Scholar] [CrossRef] [Green Version]
- Lucanic, M.; Graham, J.; Scott, G.; Bhaumik, D.; Benz, C.C.; Hubbard, A.; Lithgow, G.J.; Melov, S. Age-Related Micro-RNA Abundance in Individual, C. Elegans. Aging 2013, 5, 394–411. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yang, L.; Zhao, Z.; Wang, J.; Zhang, X. Signature MiRNAs Involved in the Innate Immunity of Invertebrates. PLoS ONE 2012, 7, e39015. [Google Scholar] [CrossRef]
- Antwi, F.B.; Reddy, G.V.P. Toxicological Effects of Pyrethroids on Non-Target Aquatic Insects. Environ. Toxicol. Pharmacol. 2015, 40, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Chipman, L.B.; Pasquinelli, A.E. MiRNA Targeting—Growing Beyond the Seed. Trends Genet. TIG 2019, 35, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Lu, Z. The Fate of MiRNA* Strand through Evolutionary Analysis: Implication for Degradation as Merely Carrier Strand or Potential Regulatory Molecule? PLoS ONE 2010, 5, e11387. [Google Scholar] [CrossRef] [Green Version]
- Majoros, W.H.; Lekprasert, P.; Mukherjee, N.; Skalsky, R.L.; Corcoran, D.L.; Cullen, B.R.; Ohler, U. MicroRNA Target Site Identification by Integrating Sequence and Binding Information. Nat. Methods 2013, 10, 630–633. [Google Scholar] [CrossRef] [Green Version]
miR-71 Target | Organism | Human Orthologue | Pathway | NLM Gene ID | Reference |
---|---|---|---|---|---|
AGO1 | Mammals | AGO1 | Argonaute System | 2623 | [20] |
AGO4 | Mammals | AGO4 | Argonaute System | 192670 | [20] |
ALG-1 | C. elegans | AGO-2 | Argonaute System | 27161 | [17,21,22,23] |
ALG-2 | C. elegans | AGO-2 | Argonaute System | 27161 | [22] |
C44F1.1 | C. elegans | None | Argonaute System | N/A | [23] |
Beta-14-Xylanase | R. venosa | None | Development and Signaling | N/A | [24] |
Calm-1 (Calmodulin) | R. philippinarum | CALM1 | Development and Signaling | 801 | [25] |
Chitin Synthase | L. migratoria | None | Development and Signaling | N/A | [26] |
FZD4 (Frizzled Pathway Protein) | Mammals | FZD4 | Development and Signaling | 8322 | [27,28] |
Membrane metallo-endopeptidase like 1 | R. venosa | MMEL1 | Development and Signaling | 79258 | [24] |
Nemo-like Kinase | E. multilocularis | NLK | Development and Signaling | 51701 | [29] |
Serine:Threonine Kinase | E. multilocularis | SNRK | Development and Signaling | 54861 | [28] |
T Cell Immunomodulatory Protein | E. multilocularis | ITFG1 | Development and Signaling | 81533 | [28] |
TIR-1 | C. elegans | SARM1 | Development and Signaling | 23098 | [30,31] |
Cytochrome P450 325BG3 (CYP325BG3) | C. pipiens | None | Environmental Stress | N/A | [32,33] |
Heat Shock Cognate 70 kD protein (HSC70) | E. granulosus | HSPA4 | Environmental Stress | 3308 | [34] |
MFS transporter DHA1 family solute carrier family 18 | S. mediterranea | SLC18A2 | Environmental Stress | 6571 | [35] |
PHA-4 | C. elegans | FOXA1/FOXA2 | Environmental Stress | 3169/3170 | [36] |
SLC31A1 (Solute Carrier Family 31 Member 1) | D. pulex | SLC31A1 | Environmental Stress | 1317 | [37] |
Cap-1 (calcification-associated peptide) | M. japonicus | CAP1 | Innate Immunity and Pathogenicity | 10487 | [38] |
IRF4 (Interferon Regulatory Factor 4) | Mammals | IRF4 | Innate Immunity and Pathogenicity | 3662 | [39] |
PCE (Preclotting Enzyme) | M. nipponense | None | Innate Immunity and Pathogenicity | N/A | [40] |
Seroin2 | B. mori | None | Innate Immunity and Pathogenicity | N/A | [41] |
CDC-25.1 | C. elegans | CDC25A | Insulin Signaling | 993 | [19] |
HBL-1 | C. elegans | REST | Insulin Signaling | 5978 | [42] |
TCER-1 | C. elegans | TCERG1 | Insulin Signaling | 10915 | [43] |
KGB-1 | C. elegans | MAPK8 | Insulin Signaling | 5598 | [44] |
lin-42 | C. elegans | PER1/PER2 | Insulin Signaling | 5187 | [43] |
PDK-1 | C. elegans | PDPK1 | Insulin Signaling | 8864 | [19] |
UNC-31 | C. elegans | CADPS2 | Insulin Signaling | 93664 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, D.; Brennan, R.; de Lencastre, A. Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis. Non-Coding RNA 2023, 9, 41. https://doi.org/10.3390/ncrna9040041
Naidoo D, Brennan R, de Lencastre A. Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis. Non-Coding RNA. 2023; 9(4):41. https://doi.org/10.3390/ncrna9040041
Chicago/Turabian StyleNaidoo, Devin, Ryan Brennan, and Alexandre de Lencastre. 2023. "Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis" Non-Coding RNA 9, no. 4: 41. https://doi.org/10.3390/ncrna9040041
APA StyleNaidoo, D., Brennan, R., & de Lencastre, A. (2023). Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis. Non-Coding RNA, 9(4), 41. https://doi.org/10.3390/ncrna9040041