Observation of Structural Changes during Oxidation of Black and Brown Soot Using Raman Spectroscopy
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Experimental Setup
3. Results and Discussion
3.1. Exposure to Laser Radiation
3.2. Heat Treatment
3.3. Photoluminescence (PL) Background Subtraction
3.4. Evaluation of Raman Signal
3.4.1. General Analysis
3.4.2. Detailed Spectral Analysis
Heat Treatment below 150 °C
Heat Treatment above 150 °C
3.4.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavilan, L.; Le, K.C.; Pino, T.; Alata, I.; Giuliani, A.; Dartois, E. Polyaromatic amorphous carbons as carriers of the UV bump: FUV to mid-infrared spectroscopy of laboratory analogs. Astron. Astrophys. 2017, 607, A73. [Google Scholar] [CrossRef]
- Saffaripour, M.; Tay, L.-L.; Thomson, K.A.; Smallwood, G.J.; Brem, B.T.; Durdina, L.; Johnson, M. Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines. Aerosol Sci. Technol. 2017, 51, 518–531. [Google Scholar] [CrossRef]
- Zhang, J.; Morawska, L. Combustion sources of particles: 2. Emission factors and measurement methods. Chemosphere 2002, 49, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Riemer, N.; Vogel, H.; Vogel, B. Soot aging time scales in polluted regions during day and night. Atmos. Chem. Phys. 2004, 4, 1885–1893. [Google Scholar] [CrossRef]
- Lambe, A.T.; Ahern, A.T.; Wright, J.P.; Croasdale, D.R.; Davidovits, P.; Onasch, T.B. Oxidative aging and cloud condensation nuclei activation of laboratory combustion soot. J. Aerosol Sci. 2015, 79, 31–39. [Google Scholar] [CrossRef]
- Friebel, F.; Lobo, P.; Neubauer, D.; Lohmann, U.; van Dusseldorp, S.D.; Mühlhofer, E.; Mensah, A.A. Impact of isolated atmospheric aging processes on the cloud condensation nuclei activation of soot particles. Atmos. Chem. Phys. 2019, 19, 15545–15567. [Google Scholar] [CrossRef]
- Faccinetto, A.; Irimiea, C.; Minutolo, P.; Commodo, M.; D’anna, A.; Nuns, N.; Carpentier, Y.; Pirim, C.; Desgroux, P.; Focsa, C.; et al. Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame. Commun. Chem. 2020, 3, 112. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, H.A.; Colket, M.B.; Bengtsson, P.-E.; D’anna, A.; Desgroux, P.; Haynes, B.S.; Miller, J.H.; Nathan, G.J.; Pitsch, H.; Wang, H. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano 2020, 14, 12470–12490. [Google Scholar] [CrossRef]
- Toth, P.; Jacobsson, D.; Ek, M.; Wiinikka, H. Real-time, in situ, atomic scale observation of soot oxidation. Carbon N. Y. 2019, 145, 149–160. [Google Scholar] [CrossRef]
- Ess, M.N.; Ferry, D.; Kireeva, E.D.; Niessner, R.; Ouf, F.-X.; Ivleva, N.P. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: Structural changes during heating. Carbon 2016, 105, 572–585. [Google Scholar] [CrossRef]
- Le, K.C.; Pino, T.; Pham, V.T.; Henriksson, J.; Török, S.; Bengtsson, P.-E. Raman spectroscopy of mini-CAST soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combust. Flame 2019, 209, 291–302. [Google Scholar] [CrossRef]
- De Falco, G.; Bocchicchio, S.; Commodo, M.; Minutolo, P.; D’anna, A. Raman Spectroscopy of Nascent Soot Oxidation: Structural Analysis During Heating. Front. Energy Res. 2022, 10, 878171. [Google Scholar] [CrossRef]
- Le, K.C.; Lefumeux, C.; Bengtsson, P.-E.; Pino, T. Direct observation of aliphatic structures in soot particles produced in low-pressure premixed ethylene flames via online Raman spectroscopy. Proc. Combust. Inst. 2019, 37, 869–876. [Google Scholar] [CrossRef]
- Le, K.C.; Lefumeux, C.; Pino, T. Watching soot inception via online Raman spectroscopy. Combust. Flame 2022, 236, 111817. [Google Scholar] [CrossRef]
- Vehring, R.; Schweiger, G. Dispersive Raman spectroscopy on soot particles. Aerosol Sci. 1998, 29, 1251–1252. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yue, K.-T.; Zhang, S.-L.; Wu, X.; Zi, J.; Shi, Z.; Gu, Z. Effects of intense laser irradiation on Raman intensity features of carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 073401–0734014. [Google Scholar] [CrossRef]
- Olevik, D.; Soldatov, A.V.; Dossot, M.; Vigolo, B.; Humbert, B.; McRae, E. Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy. Phys. Status Solidi Basic Res. 2008, 245, 2212–2215. [Google Scholar] [CrossRef]
- Török, S.; Malmborg, V.B.; Simonsson, J.; Eriksson, A.; Martinsson, J.; Mannazhi, M.; Pagels, J.; Bengtsson, P.-E. Investigation of the absorption Ångström exponent and its relation to physicochemical properties for mini-CAST soot. Aerosol Sci. Technol. 2018, 52, 757–767. [Google Scholar] [CrossRef]
- Török, S.; Mannazhi, M.; Bergqvist, S.; Le, K.C.; Bengtsson, P.-E. Influence of rapid laser heating on differently matured soot with double-pulse laser-induced incandescence. Aerosol Sci. Technol. 2022, 56, 488–501. [Google Scholar] [CrossRef]
- Moore, R.H.; Ziemba, L.D.; Dutcher, D.; Beyersdorf, A.J.; Chan, K.; Crumeyrolle, S.; Raymond, T.M.; Thornhill, K.L.; Winstead, E.L.; Anderson, B.E. Mapping the operation of the miniature combustion aerosol standard (Mini-CAST) soot generator. Aerosol Sci. Technol. 2014, 48, 467–479. [Google Scholar] [CrossRef]
- Moallemi, A.; Kazemimanesh, M.; Corbin, J.C.; Thomson, K.; Smallwood, G.; Olfert, J.S.; Lobo, P. Characterization of black carbon particles generated by a propane-fueled miniature inverted soot generator. J. Aerosol Sci. 2019, 135, 46–57. [Google Scholar] [CrossRef]
- Bescond, A.; Yon, J.; Ouf, F.-X.; Rozé, C.; Coppalle, A.; Parent, P.; Ferry, D.; Laffon, C. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 2016, 101, 118–132. [Google Scholar] [CrossRef]
- Malmborg, V.B.; Eriksson, A.C.; Török, S.; Zhang, Y.; Kling, K.; Martinsson, J.; Fortner, E.C.; Gren, L.; Kook, S.; Onasch, T.B.; et al. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon N. Y. 2019, 142, 535–546. [Google Scholar] [CrossRef]
- Török, S.; Mannazhi, M.; Bengtsson, P.-E. Laser-induced incandescence (2λ and 2C) for estimating absorption efficiency of differently matured soot. Appl. Phys. B Lasers Opt. 2021, 127, 96. [Google Scholar] [CrossRef]
- Le, K.C.; Henriksson, J.; Bengtsson, P. Polarization effects in Raman spectroscopy of light-absorbing carbon. Raman Spectrosc. 2021, 52, 1115–1122. [Google Scholar] [CrossRef]
- Ramsteiner, M.; Wild, C.; Wagner, J. Interference effects in the Raman scattering intensity from thin films: Errata. Appl. Opt. 1989, 28, 4017–4023. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; et al. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles. Sci. Rep. 2016, 6, 36495. [Google Scholar] [CrossRef] [PubMed]
- Yon, J.; Bescond, A.; Ouf, F.-X. A simple semi-empirical model for effective density measurements of fractal aggregates. J. Aerosol Sci. 2015, 87, 28–37. [Google Scholar] [CrossRef]
- Dastanpour, R.; Momenimovahed, A.; Thomson, K.; Olfert, J.; Rogak, S. Variation of the optical properties of soot as a function of particle mass. Carbon N. Y. 2017, 124, 201–211. [Google Scholar] [CrossRef]
- Vidano, R.P.; Fischbach, D.B.; Willis, L.J.; Loehr, T.M. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39, 341–344. [Google Scholar] [CrossRef]
- Haynes, J.P.; Miller, K.E.; Majestic, B.J. Investigation into Photoinduced Auto-Oxidation of Polycyclic Aromatic Hydrocarbons Resulting in Brown Carbon Production. Environ. Sci. Technol. 2019, 53, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Müllen, K.; Castiglioni, C.; Zerbi, G. Common force field for graphite and polycyclic aromatic hydrocarbons. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 60, 12710–12725. [Google Scholar] [CrossRef]
- López-Ríos, T.; Sandré, É.; Leclercq, S.; Sauvain, É. Polyacetylene in diamond films evidenced by surface enhanced Raman scattering. Phys. Rev. Lett. 1996, 76, 4935–4938. [Google Scholar] [CrossRef] [PubMed]
- Jäger, C.; Henning, T.; Schlögl, R.; Spillecke, O. Spectral properties of carbon black. J. Non. Cryst. Solids 1999, 258, 161–179. [Google Scholar] [CrossRef]
- Minutolo, P.; Gambi, G.; Alessio, A.D.; Anna, A.D. Optical and spectroscopic characterization of rich premixed flames across the soot formation threshold. Conbust. Sci. Technol. 1994, 101, 309. [Google Scholar] [CrossRef]
- Russo, C.; Apicella, B.; Tregrossi, A.; Ciajolo, A.; Le, K.C.; Török, S.; Bengtsson, P.-E. Optical band gap analysis of soot and organic carbon in premixed ethylene flames: Comparison of in-situ and ex-situ absorption measurements. Carbon 2020, 158, 89–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, K.C.; Bergqvist, S.; Henriksson, J.; Bengtsson, P.-E. Observation of Structural Changes during Oxidation of Black and Brown Soot Using Raman Spectroscopy. C 2024, 10, 38. https://doi.org/10.3390/c10020038
Le KC, Bergqvist S, Henriksson J, Bengtsson P-E. Observation of Structural Changes during Oxidation of Black and Brown Soot Using Raman Spectroscopy. C. 2024; 10(2):38. https://doi.org/10.3390/c10020038
Chicago/Turabian StyleLe, Kim Cuong, Saga Bergqvist, Jonatan Henriksson, and Per-Erik Bengtsson. 2024. "Observation of Structural Changes during Oxidation of Black and Brown Soot Using Raman Spectroscopy" C 10, no. 2: 38. https://doi.org/10.3390/c10020038
APA StyleLe, K. C., Bergqvist, S., Henriksson, J., & Bengtsson, P. -E. (2024). Observation of Structural Changes during Oxidation of Black and Brown Soot Using Raman Spectroscopy. C, 10(2), 38. https://doi.org/10.3390/c10020038