Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource
Abstract
:1. Introduction
2. Durability of Graphene-Based Cathode: Catalyst Degradation in Operating MEAs
3. The PEMFC Cathode In Situ Stability Is Based on the Pt Degradative Catalyst in the Functioning of MEA
Types of Support Materials That Contribute to the Stability of the Pt-Based PEMFC Cathode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Job, N.; Maillard, F.; Pirard, J.P.; Berthon-Fabry, S.; Chatenet, M. Pt/carbon xerogel catalysts for PEM fuel cells. In Proceedings of the Fundamentals & Developments of Fuel Cells (FDFC) 2011 Conference, Grenoble, France, 9–11 January 2011. 8p. [Google Scholar]
- Olabi, A.G.; Wilberforce, T.; Alanazi, A.; Vichare, P.; Sayed, E.T.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Novel trends in proton exchange membrane fuel cells. Energies 2022, 15, 4949. [Google Scholar] [CrossRef]
- Girod, R.; Lazaridis, T.; Gasteiger, H.A.; Tileli, V. Three-dimensional nanoimaging of fuel cell catalyst layers. Nat. Catal. 2023, 6, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Hrnjic, A.; Kamšek, A.R.; Pavlišič, A.; Šala, M.; Bele, M.; Moriau, L.; Gatalo, M.; Ruiz-Zepeda, F.; Jovanovič, P.; Hodnik, N. Observing, tracking and analysing electrochemically induced atomic-scale structural changes of an individual Pt-Co nanoparticle as a fuel cell electro-catalyst by combining modified floating electrode and identical location electron microscopy. Electrochim. Acta 2021, 388, 138513. [Google Scholar] [CrossRef]
- Sapkota, P.; Lim, S.; Aguey-Zinsou, K.F. Superior Performance of an Iron-Platinum/Vulcan Carbon Fuel Cell Catalyst. Catalysts 2022, 12, 1369. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of pro-ton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Pollastri, S.; Bogar, M.; Fiala, R.; Amenitsch, H.; Yakovlev, Y.; Lavacchi, A.; Aquilanti, G.; Matolin, V. Characterization of innovative Pt-ceria catalysts for PEMFC by means of ex-situ and operando X-Ray Absorption Spectroscopy. Int. J. Hydrogen Energy 2022, 47, 8799–8810. [Google Scholar] [CrossRef]
- Etesami, M.; Nguyen, M.T.; Yonezawa, T.; Tuantranont, A.; Somwangthanaroj, A.; Kheawhom, S. 3D carbon nano-tubes-graphene hybrids for energy conversion and storage applications. Chem. Eng. J. 2022, 446, 137190. [Google Scholar] [CrossRef]
- Barik, B.; Kumar, A.; Namgung, Y.; Mathur, L.; Park, J.Y.; Song, S.J. Mixed-ceria reinforced acid functionalized graphene oxide-Nafion electrolyte membrane with enhanced proton conductivity and chemical durability for PEMFCs. Int. J. Hydrogen Energy 2023, 48, 29313–29326. [Google Scholar] [CrossRef]
- Park, Y.C.; Tokiwa, H.; Kakinuma, K.; Watanabe, M.; Uchida, M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 2016, 315, 179–191. [Google Scholar] [CrossRef]
- Farjadian, F.; Abbaspour, S.; Sadatlu, M.A.A.; Mirkiani, S.; Ghasemi, A.; Hoseini-Ghahfarokhi, M.; Mozaffari, N.; Karimi, M.; Hamblin, M.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review. ChemistrySelect 2020, 5, 10200–10219. [Google Scholar] [CrossRef]
- Ohma, A.; Furuya, Y.; Mashio, T.; Ito, M.; Nomura, K.; Nagao, T.; Nishihara, H.; Jinnai, H.; Kyotani, T. Elucidation of oxygen reduction reaction and nanostructure of platinum-loaded graphene mesosponge for polymer electrolyte fuel cell electrocatalyst. Electrochim. Acta 2021, 370, 137705. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, R.; Chattopadhyay, J. MxOy/M/graphene coated multi-shelled nano-sphere as Bi-functional electrocatalysts for hydrogen and oxygen evolution. Int. J. Hydrogen Energy 2021, 46, 341–356. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Kundu, P.P. Enhancing sustainable bioelectricity generation using facile synthesis of nanostructures of bimetallic Co–Ni at the combined support of halloysite nanotubes and reduced graphene oxide as novel oxygen reduction reaction electrocatalyst in single-chambered microbial fuel cells. Int. J. Hydrogen Energy 2022, 47, 29413–29429. [Google Scholar]
- Chowdury, M.S.K.; Cho, Y.J.; Park, S.B.; Park, Y.I. Nanohybrid graphene oxide membranes functionalized using 3-mercaptopropyl trimethoxysilane for proton exchange membrane fuel cells. J. Membr. Sci. 2022, 663, 121035. [Google Scholar] [CrossRef]
- Javed, R.M.N.; Al-Othman, A.; Tawalbeh, M.; Olabi, A.G. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renew. Sustain. Energy Rev. 2022, 168, 112836. [Google Scholar] [CrossRef]
- Goyal, P.; Ghosh, A. Applications of Graphene-based electrocatalysts for PEMFCs. Mater. Today Proc. 2023, 76, 153–159. [Google Scholar] [CrossRef]
- Daş, E.; Gürsel, S.A.; Yurtcan, A.B. Simultaneously deposited Pt-alloy nanoparticles over graphene nanoplatelets via supercritical carbon dioxide deposition for PEM fuel cells. J. Alloys Compd. 2021, 874, 159919. [Google Scholar] [CrossRef]
- Jayabal, S.; Saranya, G.; Geng, D.; Lin, L.Y.; Meng, X. Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. J. Mater. Chem. A 2020, 8, 9420–9446. [Google Scholar] [CrossRef]
- Luo, Y.; Alonso-Vante, N. The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the art. Electrochim. Acta 2015, 179, 108–118. [Google Scholar] [CrossRef]
- Xu, G.; Yang, L.; Li, J.; Liu, C.; Xing, W.; Zhu, J. Strategies for improving stability of Pt-based catalysts for oxygen reduction reaction. Adv. Sens. Energy Mater. 2023, 2, 100058. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Q.; Zhang, F.; Xu, D.; Li, X. Atomic metal, N, S co-doped 3D porous nano-carbons: Highly efficient catalysts for HT-PEMFC. Int. J. Hydrogen Energy 2021, 46, 13180–13189. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 2016, 82, 445–498. [Google Scholar] [CrossRef]
- Trogadas, P.; Fuller, T.F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42. [Google Scholar] [CrossRef]
- Flores-Rojas, E.; Guerrero-Gutierrez, O.X.; Solorza-Feria, O. Versatile synthesis of CuPt nanocatalysts for oxygen reduction reaction. Mater. Lett. 2019, 239, 98–101. [Google Scholar] [CrossRef]
- Niu, H.; Xia, C.; Huang, L.; Zaman, S.; Maiyalagan, T.; Guo, W.; You, B.; Xia, B.Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin. J. Catal. 2022, 43, 1459–1472. [Google Scholar] [CrossRef]
- Shahgaldi, S.; Hamelin, J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review. Carbon 2015, 94, 705–728. [Google Scholar] [CrossRef]
- Valdés-Madrigal, M.A.; Montejo-Alvaro, F.; Cernas-Ruiz, A.S.; Rojas-Chávez, H.; Román-Doval, R.; Cruz-Martinez, H.; Medina, D.I. Role of defect engineering and surface functionalization in the design of carbon nanotube-based nitrogen oxide sensors. Int. J. Mol. Sci. 2021, 22, 12968. [Google Scholar] [CrossRef]
- Punetha, V.D.; Rana, S.; Yoo, H.J.; Chaurasia, A.; McLeskey, J.T., Jr.; Ramasamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Vignarooban, K.; Lin, J.; Arvay, A.; Kolli, S.; Kruusenberg, I.; Tammeveski, K.; Munukutla, L.; Kannan, A.M. Nano-electrocatalyst materials for low temperature fuel cells: A review. Chin. J. Catal. 2015, 36, 458–472. [Google Scholar] [CrossRef]
- Yuan, W.; Lu, S.; Xiang, Y. Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Adv. 2014, 4, 46265–46284. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, J.; Zhang, B.; Chen, W.; Niu, D.; Qin, Y.; Duan, X.; Zhou, X. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J. Energy Chem. 2020, 45, 59–66. [Google Scholar] [CrossRef]
- Garapati, M.S.; Sundara, R. Highly efficient and ORR active platinum-scandium alloy-partially exfoliated carbon nanotubes electrocatalyst for Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 10951–10963. [Google Scholar] [CrossRef]
- Rosado, G.; Verde, Y.; Valenzuela-Muñiz, A.M.; Barbosa, R.; Yoshida, M.M.; Escobar, B. Catalytic activity of Pt-Ni nanoparticles supported on multi-walled carbon nanotubes for the oxygen reduction reaction. Int. J. Hydrogen Energy 2016, 41, 23260–23271. [Google Scholar] [CrossRef]
- Jha, N.; Ramesh, P.; Bekyarova, E.; Tian, X.; Wang, F.; Itkis, M.E.; Haddon, R.C. Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 2013, 3, 2257. [Google Scholar] [CrossRef]
- Cha, B.C.; Jun, S.; Jeong, B.; Ezazi, M.; Kwon, G.; Kim, D.; Lee, D.H. Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells. J. Power Sources 2018, 401, 296–302. [Google Scholar] [CrossRef]
- Rosli, N.A.H.; Loh, K.S.; Wong, W.Y.; Yunus, R.M.; Lee, T.K.; Ahmad, A.; Chong, S.T. Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. Int. J. Mol. Sci. 2020, 21, 632. [Google Scholar] [CrossRef]
- Pennada, N.; Rajaputra, S.S.; Brahman, P.K. Binary Pd-Co alloy nanoparticles decorated on graphene-Vulcan carbon hybrid support: An efficient and cost-effective electrocatalyst for hydrogen evolution reaction in electrochemical methanol reformation. J. Electroanal. Chem. 2022, 915, 116351. [Google Scholar] [CrossRef]
- Velayutham, R.; Palanisamy, K.; Manikandan, R.; Velumani, T.; AP, S.K.; Puigdollers, J.; Kim, B.C. Synergetic effect induced/tuned bimetallic nanoparticles (Pt-Ni) anchored graphene as a catalyst for oxygen reduction reaction and scalable SS-314L serpentine flow field proton exchange membrane fuel cells (PEMFCs). Mater. Sci. Eng. B 2022, 282, 115780. [Google Scholar] [CrossRef]
- Chen, J.; Bailey, J.J.; Britnell, L.; Perez-Page, M.; Sahoo, M.; Zhang, Z.; Strudwick, A.; Hack, J.; Guo, Z.; Ji, Z.; et al. The performance and durability of high-temperature proton exchange membrane fuel cells enhanced by single-layer graphene. Nano Energy 2022, 93, 106829. [Google Scholar] [CrossRef]
- Martini, B.K.; Maia, G. Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER. Electrochim. Acta 2021, 391, 138907. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, J.; Guo, Z.; Zhao, Z.; Cai, R.; Rigby, M.T.; Haigh, S.J.; Perez-Page, M.; Shen, Y.; Holmes, S.M. Graphene/carbon structured catalyst layer to enhance the performance and durability of the high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2022, 75, 399–407. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, J.; Pérez-Page, M.; Guo, Z.; Zhao, Z.; Cai, R.; Rigby, M.T.; Haigh, S.J.; Holmes, S.M. Doped graphene/carbon black hybrid catalyst giving enhanced oxygen reduction reaction activity with high resistance to corrosion in proton exchange membrane fuel cells. J. Energy Chem. 2022, 68, 143–153. [Google Scholar] [CrossRef]
- Gómez, M.A.; Navarro, A.J.; Giner-Casares, J.J.; Cano, M.; Fernández-Romero, A.J.; López-Cascales, J.J. Electrodes based on nafion and epoxy-graphene composites for improving the performance and durability of open cathode fuel cells, prepared by electrospray deposition. Int. J. Hydrogen Energy 2022, 47, 13980–13989. [Google Scholar] [CrossRef]
- Marinoiu, A.; Carcadea, E.; Sacca, A.; Carbone, A.; Sisu, C.; Dogaru, A.; Raceanu, M.; Varlam, M. One-step synthesis of graphene supported platinum nanoparticles as electrocatalyst for PEM fuel cells. Int. J. Hydrogen Energy 2021, 46, 12242–12253. [Google Scholar] [CrossRef]
- Jyoti, J.; Gupta, T.K.; Singh, B.P.; Sandhu, M.; Tripathi, S.K. Recent advancement in three-dimensional graphene-carbon nanotubes hybrid materials for energy storage and conversion applications. J. Energy Storage 2022, 50, 104235. [Google Scholar] [CrossRef]
- Barik, B.; Yun, Y.; Kumar, A.; Bae, H.; Namgung, Y.; Park, J.Y.; Song, S.J. Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance. Int. J. Hydrogen Energy 2023, 48, 11029–11044. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Perez-Page, M.; Jia, Y.; Zhao, Z.; Holmes, S.M. Synthesis of phosphonated graphene oxide by electrochemical exfoliation to enhance the performance and durability of high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2023, 76, 448–458. [Google Scholar] [CrossRef]
- Abouzari-Lotf, E.; Zakeri, M.; Nasef, M.M.; Miyake, M.; Mozarmnia, P.; Bazilah, N.A.; Emelin, N.F.; Ahmad, A. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 2019, 412, 238–245. [Google Scholar] [CrossRef]
- Simari, C.; Lufrano, E.; Brunetti, A.; Barbieri, G.; Nicotera, I. Polysulfone and organo-modified graphene oxide for new hybrid proton exchange membranes: A green alternative for high-efficiency PEMFCs. Electrochim. Acta 2021, 380, 138214. [Google Scholar] [CrossRef]
- Byeon, J.H.; Park, D.H.; Lee, W.J.; Kim, M.H.; Lee, H.J.; Park, K.W. Kirkendall effect-driven formation of hollow PtNi alloy nanostructures with enhanced oxygen reduction reaction performance. J. Power Sources 2023, 556, 232483. [Google Scholar] [CrossRef]
- Sun, Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 2021, 12, 5984. [Google Scholar] [CrossRef] [PubMed]
- Mezalira, D.Z.; Bron, M. High stability of low Pt loading high surface area electrocatalysts supported on functionalized carbon nanotubes. J. Power Sources 2013, 231, 113–121. [Google Scholar] [CrossRef]
- Etesami, M.; Mehdipour-Ataei, S.; Somwangthanaroj, A.; Kheawhom, S. Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 41956–41973. [Google Scholar] [CrossRef]
- Chen, J.; Ou, Z.; Chen, H.; Song, S.; Wang, K.; Wang, Y. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chin. J. Catal. 2021, 42, 1297–1326. [Google Scholar] [CrossRef]
- Sui, S.; Wei, Z.; Su, K.; He, A.; Wang, X.; Su, Y.; Hou, X.; Raffet, S.; Du, S. Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Int. J. Hydrogen Energy 2018, 43, 20041–20049. [Google Scholar] [CrossRef]
- Sahoo, M.; Scott, K.; Ramaprabhu, S. Platinum decorated on partially exfoliated multiwalled carbon nanotubes as high-performance cathode catalyst for PEMFC. Int. J. Hydrogen Energy 2015, 40, 9435–9443. [Google Scholar] [CrossRef]
- Cao, F.; Ding, R.; Rui, Z.; Wang, X.; Meng, Z.; Zhang, B.; Dong, W.; Li, J.; Liu, J.; Jiang, X. Advances in Low Pt Loading Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells. Molecules 2023, 28, 773. [Google Scholar] [CrossRef]
- Yun, Y.S.; Kim, D.; Tak, Y.; Jin, H.J. Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell. Synth. Met. 2011, 161, 2460–2465. [Google Scholar] [CrossRef]
- Jafri, R.I.; Arockiados, T.; Rajalakshmi, N.; Ramaprabhu, S. Nanostructured Pt dispersed on gra-phene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J. Electrochem. Soc. 2010, 157, B874. [Google Scholar] [CrossRef]
- Aravind, S.J.; Ramaprabhu, S. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell. ACS Appl. Mater. Interfaces 2012, 4, 3805–3810. [Google Scholar] [CrossRef]
- Sahoo, M.; Vinayan, B.P.; Ramaprabhu, S. Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell. RSC Adv. 2014, 4, 26140–26148. [Google Scholar] [CrossRef]
- Aravind, S.J.; Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Solar exfoliated graphene–carbon nanotube hybrid nano composites as efficient catalyst supports for proton exchange membrane fuel cells. J. Mater. Chem. 2011, 21, 18199–18204. [Google Scholar] [CrossRef]
- Samantaray, S.; Mohanty, D.; Satpathy, S.K.; Hung, I.M. Exploring Recent Developments in Graphene-Based Cathode Materials for Fuel Cell Applications: A Comprehensive Overview. Molecules 2024, 29, 2937. [Google Scholar] [CrossRef]
- Ai, L.; Zhao, Z.; Zhou, Z.; Yang, X.; Zhai, H.E.N.G.; Holmes, S. Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions. In Electrochemical Society Meeting Abstracts 245; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2024. [Google Scholar]
- Zhao, Z.; Xu, B.; Fu, J.; Sun, X.; Lu, L. Durability of Pt nanowire supported on carbon nanotubes under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2024, 50, 643–653. [Google Scholar] [CrossRef]
- Leong, K.S.; Choo, T.F.; Saidin, N.U.; Zali, N.M.; Azhar, N.; Masdar, M.S. In situ synthesis and deposition of palladium nanoparticles on gas diffusion layers via gamma radiolysis for cathode electrodes in proton exchange membrane fuel cells. Chem. Phys. Lett. 2024, 857, 141699. [Google Scholar] [CrossRef]
Polymers | Composite Membranes | Ion Exchange Capacity (IEC) (meq g−1) | Water Uptake (%) | OCV (V) | Power Density (mW cm−2)/ mA cm−2 | Reference |
---|---|---|---|---|---|---|
Nafion | 4.5 wt% (G) | 1.86 | 32.86 | - | 490 at 120 °C mW cm−2 | [16] |
Nafion | 4.0 wt% (G) | - | - | - | 415 at 120 °C mW cm−2 | |
Nafion | 5 to 10 wt% (G) | 0.96 | 28.75 | - | 150 at 120 °C mW cm−2 | |
Nafion | GO membrane (GOM) | 0.09 | 35.0 | - | 3 at 40 °C mW cm−2 | [15] |
Nafion | (3-mercaptopropyl) trimethoxysilane (MPTS)-GOM | 1.15 | 36.05 | - | 26 at 4 °C mW cm−2 | |
Nafion | 1 wt% MPTS-GOM | 1.20 | 21.0 | - | 23.25 at 40 °C mW cm−2 | |
Nafion | 5 wt% MPTS-GOM | 1.20 | 23.54 | - | 27.25 at 40 °C mW cm−2 | |
Nafion | 10 wt% MPTS-GOM | 1.23 | 24.02 | - | 33 at 40 °C mW cm−2 | |
Nafion | 50 wt% MPTS-GOM | 1.27 | 25.88 | - | 56.45 at 40 °C mW cm−2 | |
Nafion | 50 wt% MPTS-GOM | 1.42 | 24.23 | - | - | |
Nafion | Pd/GOM (GOHM) | - | 18.18 | - | 21 at 40 °C mW cm−2 | |
Nafion | Pd/MPTS-GOM (GOHM) | 1.11 | 18.20 | - | 43 at 40 °C mW cm−2 | |
Nafion | Pd/50 wt% MPTS-GOM (GOHM) | 1.30 | 27.77 | - | 73.80 mW cm−2 | |
Nafion/sGO/Fe3O4 | 3 wt% of sulfonated GO | 1.36 | 35.63 | - | 783.7 mW cm−2 | [16] |
Nafion | Pt/rGO | - | - | 0.89 | 520 at 1.18 mA cm−2 | [45] |
Nafion | Pt/graphene/CNT | - | - | - | 1071.8 mW cm−2 | [46] |
Nafion | Pt/PMWCNT Pt/rGO-functionalized MWCNT-polyethyleneimine | - | - | - | 440.0 mW cm−2 | |
Nafion | Pt/1rGO-1PMWCNT (mass ratios 1:1) | - | - | - | 680.0 mW cm−2 | |
Nafion | PtNi/GNP | - | - | - | 378 at 632 mA cm−2 | [18] |
Nafion | PtFe/GNP | - | - | - | 293 at 489 mA cm−2 | |
Nafion | PtCu/GNP | - | - | - | 256 at 428 mA cm−2 | |
Nafion | Pt/NrEGO2-CB3 | - | - | - | 411.0 mW cm−2 | [42] |
Nafion | Py-PBI/1.0% PGO | - | - | - | 331.0 mW cm−2 | [49] |
Nafion | Py-PBI/1.5% PGO | - | - | - | 359.0 mW cm−2 | |
Nafion | sPSU-SGO | 1.51 | 0.984 | 216.0 mW cm−2 | [50] |
Catalyst MEA | Potential (V) | Current Density (A cm−2) | Power Density (W cm−2) | ECSA (m2 g−1) | Electrochemical Durability (h) | Reference | |
---|---|---|---|---|---|---|---|
Anode | Cathode | ||||||
67.7% Tanaka | Pt-Fe/GNPs | 0.6 | 0.490 | 0.293 | 132 | 100 | [18] |
Pt-Ni/GNPs | 0.632 | 0.378 | 136 | ||||
Pt-Cu/GNPs | 0.428 | 0.256 | 122 | ||||
Pt-Fe/GNPs | 67.7% Tanaka | 0.6 | 0.643 | 0.385 | 120 | ||
Pt-Ni/GNPs | 0.839 | 0.502 | 95 | ||||
Pt-Cu/GNPs | 0.700 | 0.419 | 60 | ||||
Pt-Fe/GNPs | Pt-Fe/GNPs | 0.6 | 0.414 | 0.247 | 110 | ||
Pt-Ni/GNPs | Pt-Ni/GNPs | 0.615 | 0.368 | 123 | |||
Pt-Cu/GNPs | Pt-Cu/GNPs | 0.322 | 0.193 | 65 | |||
Pt/GNPs | Pt/GNPs | 0.503 | 0.301 | - | - | ||
Pt/C | Pt/rGO | 0.5 | 0.032 | 0.020 | - | - | [53] |
Pt/C | PtAu/rGO | 0.134 | 0.070 | - | - | ||
Pt/C | PtAu/rGO+CNT | 0.247 | 0.128 | - | - | ||
Pt/C | PtAu/rGO +PtAu/CNT | 0.691 | 0.365 | - | - | ||
Pt/C | Pt–CeO2-GO | 0.50 | - | - | |||
Pt/C (20%) | Pt/G | 0.9 | 1.226 | 0.46 | 98.15 | 4 | [39] |
Pt/C (20%) | Pt3-Ni/G | 1.590 | 0.57 | 108.56 | |||
Pt/C (20%) | Pt/C | 1.1975 | 0.36 | 84.92 | |||
Pt-Ru/C | Pd3-Co1/G | 0.59 | 0.200 | - | - | - | [38] |
Pt-Ru/C | Pd3-Co1/G-C | - | 120.154 | 50 | |||
Pt-Ru/C | Pd3-Co1/C | - | 36.0 | ||||
- | Pt/NG | 0.95 | 0.300 | - | 34.7 | 120 | |
Pt/C | Au@AuPd-rGo | - | - | 0.362 | - | - | [64] |
- | Pt-Co/G | 1.779 | 0.785 | - | [17] | ||
- | PtNW-Pd/rGO | - | - | 0.226 | 19.0 | 200 | |
- | Pt/rGO-O | - | 0.5 | - | 51.0 | - | |
- | Pt/rGO-FCB | - | - | 1.344 | 62.0 | 5000 | |
- | Au/rGO | - | 1.4 | 0.65 | 12.9 | 9200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinoiu, A.; Iordache, M.; Borta, E.S.; Oubraham, A. Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource. C 2024, 10, 105. https://doi.org/10.3390/c10040105
Marinoiu A, Iordache M, Borta ES, Oubraham A. Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource. C. 2024; 10(4):105. https://doi.org/10.3390/c10040105
Chicago/Turabian StyleMarinoiu, Adriana, Mihaela Iordache, Elena Simona Borta, and Anisoara Oubraham. 2024. "Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource" C 10, no. 4: 105. https://doi.org/10.3390/c10040105
APA StyleMarinoiu, A., Iordache, M., Borta, E. S., & Oubraham, A. (2024). Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource. C, 10(4), 105. https://doi.org/10.3390/c10040105