Self-Assembled Synthesis of Graphene Tubes from Melamine Catalyzed by Calcium Carbonate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
3. Results
3.1. Microscopic Morphology of Carbon Products
3.2. Mechanism of Tube Formation
3.3. Characterization of Carbon Products
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C 2023, 9, 108. [Google Scholar] [CrossRef]
- He, X.; Cui, C.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D. MXene and Polymer Collision: Sparking the Future of High-Performance Multifunctional Coatings. Adv. Funct. Mater. 2024, 2409675. [Google Scholar] [CrossRef]
- Xu, W.; Yang, W.; Su, J.; Huang, J.; Min, Y.; Yu, Y.; Zeng, Y.; Chen, P.; Wang, Y.; Li, X. Diatom-Based Biomass Composites Phase Change Materials with High Thermal Conductivity for Battery Thermal Management. J. Energy Storage 2024, 96, 112737. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Jiang, X.-Y.; Thanh, B.X.; Lin, J.-Y.; Wang, H.; Huang, C.-W.; Yang, H.; Ebrahimi, A.; Sirivithayapakorn, S.; Lin, K.-Y. Magnetic Carbon Foam Adorned with Co/Fe Nanoneedles as an Efficient Activator of Oxone for Oxidative Environmental Remediation: Roles of Surficial and Chemical Enhancement. C 2023, 9, 107. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature 2009, 458, 877–880. [Google Scholar] [CrossRef]
- Li, Q.; Xu, P.; Gao, W.; Ma, S.; Zhang, G.; Cao, R.; Cho, J.; Wang, H.; Wu, G. Graphene/Graphene-Tube Nanocomposites Templated from Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li-O2 Batteries. Adv. Mater. 2014, 26, 1378–1386. [Google Scholar] [CrossRef]
- Song, G.; Li, Z.; Meng, A.; Zhang, M.; Li, K.; Zhu, K. Large-Scale Template-Free Synthesis of N-Doped Graphene Nanotubes and N-Doped SiO2-Coated Graphene Nanotubes: Growth Mechanism and Field-Emission Property. J. Alloys Compd. 2017, 706, 147–155. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, J.; Nguyen-Tri, P. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution. ACS Appl. Mater. Interfaces 2024, 16, 10969–10983. [Google Scholar] [CrossRef]
- Khezami, L.; Aissa, M.A.B.; Modwi, A.; Ismail, M.; Guesmi, A.; Algethami, F.K.; Ticha, M.B.; Assadim, A.A.; Nguyen-Tri, P. Harmonizing the Photocatalytic Activity of g-C3N4 Nanosheets by ZrO2 Stuffing: From Fabrication to Experimental Study for The Wastewater Treatment. Biochem. Eng. J. 2022, 182, 108411. [Google Scholar] [CrossRef]
- Jiang, H.; Li, J.; Xie, Y.; Guo, H.; He, M.; Shi, X.; Mei, Y.; Sheng, X.; Xie, D. Design of Efficient Microstructured Path by Magnetic Orientation Boron Nitride Nanosheets/MnFe2O4 Enabling Waterborne Polyurethane with High Thermal Conductivity and Flame Retardancy. J. Mater. Sci. Technol. 2025, 209, 207–218. [Google Scholar] [CrossRef]
- Wang, R.; Hao, Y.; Wang, Z.; Gong, H.; Thong, J.T.L. Large-Diameter Graphene Nanotubes Synthesized Using Ni Nanowire Templates. Nano Lett. 2010, 10, 4844–4850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S.V.; Wang, X.; Swihart, M.T.; Wu, G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016, 6, 1601198. [Google Scholar] [CrossRef]
- Chen, M.; Hwang, S.; Li, J.; Karakalos, S.; Chen, K.; He, Y.; Mukherjee, S.; Su, D.; Wu, G. Pt Alloy Nanoparticles Decorated on Large-Size Nitrogen-Doped Graphene Tubes for Highly Stable Oxygen-Reduction Catalysts. Nanoscale 2018, 10, 17318–17326. [Google Scholar] [CrossRef] [PubMed]
- Majidi, R. Structural and Electronic Properties of S-Graphene Nanotubes: A Density Functional Theory Study. Diam. Relat. Mater. 2021, 118, 108520. [Google Scholar] [CrossRef]
- Li, Q.; Pan, H.; Higgins, D.; Cao, R.; Zhang, G.; Lv, H.; Wu, K.; Cho, J.; Wu, G. Metal–Organic Framework-Derived Bamboo-like Nitrogen-Doped Graphene Tubes as an Active Matrix for Hybrid Oxygen-Reduction Electrocatalysts. Small 2015, 11, 1443–1452. [Google Scholar] [CrossRef]
- Song, G.; Luo, S.; Zhang, J.; Zhang, M.; Qiu, G.; Meng, A.; Lin, Y.; Li, Z. Template-Free One-Step Synthesis of the Multi-Layer Carbon or Stacked Graphene Sheets Coessentially Coating N-Doped Graphene Tubes and Their Field Emission and Photoluminescence Properties. J. Alloys Compd. 2020, 829, 154411. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L. Fabricated Ultrathin Magnetic Nitrogen Doped Graphene Tube as Efficient and Recyclable Adsorbent for Highly Sensitive Simultaneous Determination of Three Tetracyclines Residues in Milk Samples. J. Chromatogr. A 2018, 1568, 1–7. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.; He, J.; Huang, Z.; Qin, H.; Xiao, X.; Ni, H.; Chi, H.; He, J. Cobalt-Based N-Doped Bamboo-like Graphene Tubes with Enhanced Durability for Efficient Oxygen Reduction Reaction in Direct Borohydride Fuel Cell. Carbon 2023, 201, 856–863. [Google Scholar] [CrossRef]
- Chen, T.; Dai, L. Macroscopic Graphene Fibers Directly Assembled from CVD-Grown Fiber-Shaped Hollow Graphene Tubes. Angew. Chem. 2015, 127, 15160–15163. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Zhang, Z.; Dong, P.; Xu, M.; Peng, H.; Zeng, X.; Zhang, Y.; Liao, S. Design of Ultralong-Life Li–CO2 Batteries with IrO2 Nanoparticles Highly Dispersed on Nitrogen-Doped Carbon Nanotubes. J. Mater. Chem. A 2020, 8, 3763–3770. [Google Scholar] [CrossRef]
- Mo, R.; Tan, X.; Li, F.; Tao, R.; Xu, J.; Kong, D.; Wang, Z.; Xu, B.; Wang, X.; Wang, C.; et al. Tin-Graphene Tubes as Anodes for Lithium-Ion Batteries with High Volumetric and Gravimetric Energy Densities. Nat. Commun. 2020, 11, 1374. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Huang, J.; Wang, X.; Weng, M.; Cao, Y.; Min, Y. Template Free Preparation of Graphene Tubes from Polyimide Catalyzed by Calcium Carbonate. Chem. Commun. 2023, 59, 13321–13324. [Google Scholar] [CrossRef]
- Couteau, E.; Hernadi, K.; Seo, J.W.; Thiên-Nga, L.; Mikó, C.; Gaál, R.; Forró, L. CVD Synthesis of High-Purity Multiwalled Carbon Nanotubes Using CaCO3 Catalyst Support for Large-Scale Production. Chem. Phys. Lett. 2003, 378, 9–17. [Google Scholar] [CrossRef]
- Kathyayini, H.; Nagaraju, N.; Fonseca, A.; Nagy, J.B. Catalytic Activity of Fe, Co and Fe/Co Supported on Ca and Mg Oxides, Hydroxides and Carbonates in the Synthesis of Carbon Nanotubes. J. Mol. Catal. Chem. 2004, 223, 129–136. [Google Scholar] [CrossRef]
- Schmitt, T.C.; Biris, A.S.; Miller, D.W.; Biris, A.R.; Lupu, D.; Trigwell, S.; Rahman, Z.U. Analysis of Effluent Gases during the CCVD Growth of Multi-Wall Carbon Nanotubes from Acetylene. Carbon 2006, 44, 2032–2038. [Google Scholar] [CrossRef]
- Feng, J.; Yin, Y. Self-Templating Approaches to Hollow Nanostructures. Adv. Mater. 2019, 31, 1802349. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, W.; Yue, Q.; Gao, B.; Sun, Y.; Kong, J.; Zhao, P. Simple Synthesis of Hierarchical Porous Carbon from Enteromorpha Prolifera by a Self-Template Method for Supercapacitor Electrodes. J. Power Sources 2014, 270, 403–410. [Google Scholar] [CrossRef]
- Liang, Q.; Shao, B.; Tong, S.; Liu, Z.; Tang, L.; Liu, Y.; Cheng, M.; He, Q.; Wu, T.; Pan, Y. Recent Advances of Melamine Self-Assembled Graphitic Carbon Nitride-Based Materials: Design, Synthesis and Application in Energy and Environment. Chem. Eng. J. 2021, 405, 126951. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhou, C.; Zhang, P.; Guo, S.; Li, S.; Meng, X.; Lu, Y.; Xu, H.; Ma, H.; et al. In Situ Self-Assembly Synthesis of Carbon Self-Doped Graphite Carbon Nitride Hexagonal Tubes with Enhanced Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2019, 44, 27354–27362. [Google Scholar] [CrossRef]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.-W.; Ma, Z.; Song, W.-G. Preparation and Characterization of Carbon Nitride Nanotubes and Their Applications as Catalyst Supporter. J. Phys. Chem. C 2009, 113, 8668–8672. [Google Scholar] [CrossRef]
- Li, J.; Cao, C.; Zhu, H. Synthesis and Characterization of Graphite-like Carbon Nitride Nanobelts and Nanotubes. Nanotechnology 2007, 18, 115605. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Wu, J.; Yan, P.; Xu, L.; Lei, Y.; Yuan, S.; et al. Self-Assembled Synthesis of Defect-engineered Graphitic Carbon Nitride Nanotubes for Efficient Conversion of Solar Energy. Appl. Catal. B Environ. 2018, 225, 154–161. [Google Scholar] [CrossRef]
- Mou, Z.; Chen, X.; Du, Y.; Wang, X.; Yang, P.; Wang, S. Forming Mechanism of Nitrogen Doped Graphene Prepared by Thermal Solid-State Reaction of Graphite Oxide and Urea. Appl. Surf. Sci. 2011, 258, 1704–1710. [Google Scholar] [CrossRef]
- Vogel, W.; Hosemann, R. The Paracrystalline Nature of Pyrolytic Carbons. Carbon 1979, 17, 41–48. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K.S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 2011, 5, 2231–2239. [Google Scholar] [CrossRef]
- Jiao, J.; Liu, X.; Gao, W.; Wang, C.; Feng, H.; Zhao, X.; Chen, L. Two-step Synthesis Flowerlike Calcium Carbonate/Biopolymer Composite Materials. CrystEngComm 2009, 11, 1886–1891. [Google Scholar] [CrossRef]
- She, X.; Xu, H.; Wang, H.; Xia, J.; Song, Y.; Yan, J.; Xu, Y.; Zhang, Q.; Du, D.; Li, H. Controllable Synthesis of CeO2/g-C3N4 Composites and Their Applications in the Environment. Dalt. Transact. 2015, 44, 7021–7031. [Google Scholar] [CrossRef] [PubMed]
- Ewels, C.; Glerup, M.; Krstic, V.; Basiu, V.; Basiuk, E. Nitrogen and Boron Doping in Carbon Nanotubes. In Chemistry of Carbon Nanotubes; American Scientific Publishers: Stevenson Ranch, CA, USA, 2007; pp. 1–82. [Google Scholar]
- She, X.; Xu, H.; Xu, Y.; Yan, J.; Xia, J.; Xu, L.; Song, Y.; Jiang, Y.; Zhang, Q.; Li, H. Exfoliated Graphene-like Carbon Nitride in Organic Solvents: Enhanced Photocatalytic Activity and Highly Selective and Sensitive Sensor for The Detection of Trace Amounts of Cu2+. J. Mater. Chem. A 2014, 2, 2563–2570. [Google Scholar] [CrossRef]
- Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. A Graphitic-C3N4 “Seaweed” Architecture for Enhanced Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 11433–11437. [Google Scholar] [CrossRef]
- Sianipar, M.; Kim, S.H.; Iskandar, F.; Wenten, I.G. Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Adv. 2017, 7, 51175–51198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Meng, J.; Zheng, X.; Mao, T.; Huang, J.; Min, Y. Self-Assembled Synthesis of Graphene Tubes from Melamine Catalyzed by Calcium Carbonate. C 2024, 10, 87. https://doi.org/10.3390/c10040087
Zeng W, Meng J, Zheng X, Mao T, Huang J, Min Y. Self-Assembled Synthesis of Graphene Tubes from Melamine Catalyzed by Calcium Carbonate. C. 2024; 10(4):87. https://doi.org/10.3390/c10040087
Chicago/Turabian StyleZeng, Wenping, Jingxiang Meng, Xinbo Zheng, Tingting Mao, Jintao Huang, and Yonggang Min. 2024. "Self-Assembled Synthesis of Graphene Tubes from Melamine Catalyzed by Calcium Carbonate" C 10, no. 4: 87. https://doi.org/10.3390/c10040087
APA StyleZeng, W., Meng, J., Zheng, X., Mao, T., Huang, J., & Min, Y. (2024). Self-Assembled Synthesis of Graphene Tubes from Melamine Catalyzed by Calcium Carbonate. C, 10(4), 87. https://doi.org/10.3390/c10040087