Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Holleis, L.; Saito, Y.; Cohen, L.; Huynh, W.; Patterson, C.L.; Yang, F.; Taniguchi, T.; Watanabe, K.; Young, A.F. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 2022, 375, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, T.T. Surprising superconductivity of graphene. Science 2022, 375, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 2021, 590, 249–255. [Google Scholar] [CrossRef]
- Uri, A.; Grover, S.; Cao, Y.; Crosse, J.A.; Bagani, K.; Rodan-Legrain, D.; Myasoedov, Y.; Watanabe, K.; Taniguchi, T.; Moon, P.; et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 2020, 581, 47–52. [Google Scholar] [CrossRef]
- Li, G.; Luican, A.; Lopes dos Santos, J.M.B.; Castro Neto, A.H.; Reina, A.; Kong, J.; Andrei, E.Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113. [Google Scholar] [CrossRef]
- Brihuega, I.; Mallet, P.; González-Herrero, H.; de Laissardière, G.T.; Ugeda, M.M.; Magaud, L.; Gómez-Rodríguez, J.M.; Ynduráin, F.; Veuillen, J.-Y. Unraveling the Intrinsic and robust nature of van hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 2012, 109, 196802. [Google Scholar] [CrossRef]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef]
- Seo, K.; Kotov, V.N.; Uchoa, B. Ferromagnetic Mott state in twisted graphene bilayers at the magic angle. Phys. Rev. Lett. 2019, 122, 246402. [Google Scholar] [CrossRef]
- Li, S.-Y.; Zhang, Y.; Ren, Y.-N.; Liu, J.; Dai, X.; He, L. Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene. Phys. Rev. B 2020, 102, 121406. [Google Scholar] [CrossRef]
- Kerelsky, A.; Rubio-Verdú, C.; Xian, L.; Kennes, D.M.; Halbertal, D.; Finney, N.; Song, L.; Turkel, S.; Wang, L.; Watanabe, K.; et al. Moiréless correlations in ABCA graphene. Proc. Natl. Acad. Sci. USA 2021, 118, e2017366118. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.H.; Fu, Y.; Sarma, S.D.; Pixley, J.H. Disorder in twisted bilayer graphene. Phys. Rev. Res. 2020, 2, 023325. [Google Scholar] [CrossRef]
- Turkel, S.; Swann, J.; Zhu, Z.; Christos, M.; Watanabe, K.; Taniguchi, T.; Sachdev, S.; Scheurer, M.S.; Kaxiras, E.; Dean, C.R.; et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 2022, 376, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, E.; Kruchkov, A.J.; Tarnopolsky, G.; Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 2019, 100, 085109. [Google Scholar] [CrossRef]
- Zhou, H.; Xie, T.; Taniguchi, T.; Watanabe, K.; Young, A.F. Superconductivity in rhombohedral trilayer graphene. Nature 2021, 598, 434–438. [Google Scholar] [CrossRef]
- Han, T.; Lu, Z.; Scuri, G.; Sung, J.; Wang, J.; Han, T.; Watanabe, K.; Taniguchi, T.; Fu, L.; Park, H.; et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 2023, 623, 41–47. [Google Scholar] [CrossRef]
- Winterer, F.; Geisenhof, F.R.; Fernandez, N.; Seiler, A.M.; Zhang, F.; Weitz, R.T. Ferroelectric and spontaneous quantum Hall states in intrinsic rhombohedral trilayer graphene. Nat. Phys. 2024, 20, 422–427. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, Y.-C.; Woods, C.R.; Shi, Y.; Yin, J.; Xu, S.; Ozdemir, S.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; et al. Stacking Order in Graphite Films Controlled by van der Waals Technology. Nano Lett. 2019, 19, 8526–8532. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, S.; Yang, Y.; Slizovskiy, S.; Morozov, S.V.; Son, S.-K.; Ozdemir, S.; Mullan, C.; Barrier, J.; Yin, J.; et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 2020, 584, 210–214. [Google Scholar] [CrossRef]
- Freise, E.J.; Kelly, A. The deformation of graphite crystals and the production of the rhombohedral form. Philos. Mag. 1963, 93, 1519–1533. [Google Scholar] [CrossRef]
- Boi, F.S.; Lee, C.-Y.; Wang, S.; Wu, H.; Li, L.; Zhang, L.; Song, J.; Dai, Y.; Taallah, A.; Odunmbaku, O.; et al. Rhombohedral stacking-faults in exfoliated highly oriented pyrolytic graphite. Carbon Trends 2024, 15, 100345. [Google Scholar] [CrossRef]
- Nery, J.P.; Calandra, M.; Mauri, F. Long-Range Rhombohedral-Stacked Graphene through Shear. Nano Lett. 2020, 20, 5017–5023. [Google Scholar] [CrossRef] [PubMed]
- Esquinazi, P.; Heikkilä, T.T.; Lysogoskiy, Y.V.; Tayurskii, D.A.; Volovik, G.E. On the superconductivity of graphite interfaces. JETP Lett. 2014, 100, 336–339. [Google Scholar] [CrossRef]
- Ariskina, R.; Stiller, M.; Precker, C.E.; Böhlmann, W.; Esquinazi, P.D. On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature. Materials 2022, 15, 3422. [Google Scholar] [CrossRef]
- Ballestar, A.; Barzola-Quiquia, J.; Scheike, T.; Esquinazi, P. Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys. 2013, 15, 023024. [Google Scholar] [CrossRef]
- Esquinazi, P.D. Ordered Defects: A Roadmap towards room temperature Superconductivity and Magnetic Order. arXiv 2019, arXiv:1902.07489. [Google Scholar]
- Precker, C.E.; Esquinazi, P.D.; Champi, A.; Barzola-Quiquia, J.; Zoraghi, M.; Muiños-Landin, S.; Setzer, A.; Böhlmann, W.; Spemann, D.; Meijer, J.; et al. Identification of a possible superconducting transition above room temperature in natural graphite crystals. New J. Phys. 2016, 18, 113041. [Google Scholar] [CrossRef]
- Precker, C.E.; Barzola-Quiquia, J.; Chan, M.K.; Jaime, M.; Esquinazi, P.D. High-field and high-temperature magnetoresistance reveals the superconducting behavior of the stacking faults in multilayer graphene. Carbon 2023, 203, 462–468. [Google Scholar] [CrossRef]
- Kopnin, N.B.; Heikkilä, T.T.; Volovik, G.E. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 2011, 83, 220503. [Google Scholar] [CrossRef]
- Kopnin, N.B.; Ijäs, M.; Harju, A.; Heikkilä, T.T. High-temperature surface superconductivity in rhombohedral graphite. Phys. Rev. B 2013, 87, 140503. [Google Scholar] [CrossRef]
- Kopnin, N.B.; Heikkilä, T.T. Surface Superconductivity in Rhombohedral Graphite. In Carbon-Based Superconductors: Towards High-Tc Superconductivity; Haruyama, J., Jenny, S., Eds.; Taylor & Francis Group: London, UK, 2014; Chapter 9; pp. 231–263. [Google Scholar]
- Rousset-Zenou, R.; Layek, S.; Monteverde, M.; Gay, F.; Dufeu, D.; Núñez-Regueiro, M. Hidden Granular Superconductivity Above 500K in off-the-shelf graphite materials. arXiv, 2022; arXiv:2207.09149. [Google Scholar]
- Layek, S.; Monteverde, M.; Garbarino, G.; Méasson, M.-A.; Sulpice, A.; Bendiab, N.; Rodière, P.; Cazali, R.; Hadj-Azzem, A.; Nassif, V.; et al. Possible high temperature superconducting transitions in disordered graphite obtained from room temperature deintercalated KC8. Carbon 2023, 201, 667–678. [Google Scholar] [CrossRef]
- Arnold, F.; Nyéki, J.; Saunders, J. Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy. Jetp Lett. 2018, 107, 577–578. [Google Scholar] [CrossRef]
- Arroyo-Gascón, O.; Fernández-Perea, R.; Suarez Morell, E.; Cabrillo, C.; Chico, L. One-Dimensional Moiré Superlattices and Flat Bands in Collapsed Chiral Carbon Nanotubes. Nano Lett. 2020, 20, 7588–7593. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Chen, J.; Hu, C.; Lyu, B.; Xu, K.; Lou, S.; Shen, P.; Ma, S.; Wu, Z.; et al. Pressure-induced flat bands in one-dimensional moiré superlattices of collapsed chiral carbon nanotubes. Phys. Rev. B 2024, 109, 045105. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Gu, A.; Boi, F.S. Stacking-faults and moiré superlattice nucleation within the graphitic layers of partially-collapsed carbon nano-onions filled with γ-Fe: The role of indium isopropoxide as growth-promoter. New J. Chem. 2024, 48, 14521–14526. [Google Scholar] [CrossRef]
- Boi, F.S.; Medranda, D.; Ivaturi, S.; Wang, J.; Guo, J.; Lan, M.; Wen, J.; Wang, S.; He, Y.; Mountjoy, G.; et al. Peeling off effects in vertically aligned Fe3C filled carbon nanotubes films grown by pyrolysis of ferrocene. J. Appl. Phys. 2017, 121, 244302. [Google Scholar] [CrossRef]
- Jones, A.C.; Hitchman, M.L. (Eds.) Chemical Vapour Deposition: Precursors, Processes, and Applications; RSC Publishing: London, UK, 2008. [Google Scholar]
- Elliott, B.R.; Host, J.J.; Dravida, V.P.; Teng, M.H.; Hwang, J.-H. A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J. Mater. Res. 1997, 12, 3328–3344. [Google Scholar] [CrossRef]
- Wu, H.; Song, J.; He, Y.; Wang, S.; Lei, L.; Wen, J.; Gu, A.; Zhang, H.; Boi, F.S. Magnetic coupling in cm-scale buckypapers of self-organized Fe/Fe3C-filled carbon nano-onions: A controlled chemical vapor deposition approach. Diam. Relat. Mater. 2022, 130, 109503. [Google Scholar] [CrossRef]
- Pinault, M.; Pichot, V.; Khodja, H.; Launois, P.; Reynaud, C.; Mayne-L’Hermite, M. Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 2005, 5, 2394. [Google Scholar] [CrossRef]
- Boi, F.S.; Taallah, A.; Gao, S.; Wang, S.; Corrias, A. Scanning tunneling microscopy identification of van Hove singularities and negative thermal expansion in highly oriented pyrolytic graphite with hexagonal Moiré superlattices. Carbon Trends 2021, 3, 100034. [Google Scholar] [CrossRef]
- Taallah, A.; Odunmbaku, O.; Ivaturi, S.; Wen, J.; Liu, M.; Zhang, X.; Medranda, D.; Wang, S.; Boi, F.S. Water-assisted structural manipulation of ferromagnetically filled carbon onions: The case of high pressure Fe3O4. Dae Solid State Phys. Symp. 2019, 2115, 030119. [Google Scholar]
- Claramunt, S.; Varea, A.; Lopez-Dıaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Hesp, N.C.H.; Batlle-Porro, S.; Krishna Kumar, R.; Agarwal, H.; Ruiz, D.B.; Sheinfux, H.H.; Watanabe, K.; Taniguchi, T.; Stepanov, P.; Koppens, F.H. Cryogenic nano-imaging of second-order moiré superlattices. Nat. Mater. 2024, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sinner, A.; Pantaleón, P.A.; Guinea, F. Strain-induced quasi-1D channels in twisted moiré lattices. Phys. Rev. Lett. 2023, 131, 166402. [Google Scholar] [CrossRef]
- Wang, P.; Yu, G.; Kwan, Y.H.; Jia, Y.; Lei, S.; Klemenz, S.; Cevallos, F.A.; Singha, R.; Devakul, T.; Watanabe, K.; et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 2022, 605, 57–62. [Google Scholar] [CrossRef]
- Trugenberger, C.A. Room-Temperature Superconductivity in 1D. Condens. Matter 2024, 9, 34. [Google Scholar]
- Kopelevich, Y.; Torres, J.; da Silva, R.; Oliveira, F.; Diamantini, M.C.; Trugenberger, C.; Vinokur, V. Global room-temperature superconducitivity in graphite. Adv. Quantum Technol. 2023, 1, 2300230. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taallah, A.; Wang, S.; Odunmbaku, O.; Zhang, L.; Guo, X.; Dai, Y.; Li, W.; Ye, H.; Wu, H.; Song, J.; et al. Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate. C 2024, 10, 91. https://doi.org/10.3390/c10040091
Taallah A, Wang S, Odunmbaku O, Zhang L, Guo X, Dai Y, Li W, Ye H, Wu H, Song J, et al. Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate. C. 2024; 10(4):91. https://doi.org/10.3390/c10040091
Chicago/Turabian StyleTaallah, Ayoub, Shanling Wang, Omololu Odunmbaku, Lin Zhang, Xilong Guo, Yixin Dai, Wenkang Li, Huanqing Ye, Hansong Wu, Jiaxin Song, and et al. 2024. "Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate" C 10, no. 4: 91. https://doi.org/10.3390/c10040091
APA StyleTaallah, A., Wang, S., Odunmbaku, O., Zhang, L., Guo, X., Dai, Y., Li, W., Ye, H., Wu, H., Song, J., Guo, J., Wen, J., He, Y., & Boi, F. S. (2024). Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate. C, 10(4), 91. https://doi.org/10.3390/c10040091