Fluorination to Enhance the Tribological Properties of Carbonaceous Materials
Abstract
:1. Introduction
2. Fluorination and Materials
3. Tribological Properties
3.1. Method
3.2. Fluorine Content
3.3. Effect of the Size and Dimensionality
3.4. C-F Bonding
3.5. Stacking
4. Mechanism for the Reduction of the Friction
5. Nano-Tribology
6. Composites
7. Dispersion in Liquid Lubricating Solutions
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, F.-Z.; Liu, X.-B.; Yang, C.-M.; Chen, G.-D.; Meng, Y.; Zhou, H.-B.; Zhang, S.-H. Insights into Robust Carbon Nanotubes in Tribology: From Nano to Macro. Mater. Today 2024, 74, 203–234. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Fusaro, R.L.; Sliney, H.E. Preliminary Investigation of Graphite Fluoride (CFx)n as a Solid Lubricant; National Aeronautics and Space Administration: Washington, DC, USA, 1969.
- Fusaro, R.L.; Sliney, H.E. Graphite Fluoride (CFx)n—A New Solid Lubricant. ASLE Trans. 1970, 13, 56–65. [Google Scholar] [CrossRef]
- Fusaro, R.L. Comparison of the Tribological Properties of Fluorinated Cokes and Graphites. Tribol. Trans. 1989, 32, 121–132. [Google Scholar] [CrossRef]
- Chatenet, M.; Berthon-Fabry, S.; Ahmad, Y.; Guérin, K.; Colin, M.; Farhat, H.; Frezet, L.; Zhang, G.; Dubois, M. Fluorination and Its Effects on Electrocatalysts for Low-Temperature Fuel Cells. Adv. Energy Mater. 2023, 13, 2204304. [Google Scholar] [CrossRef]
- Agopian, J.-C.; Téraube, O.; Charlet, K.; Dubois, M. A Review about the Fluorination and Oxyfluorination of Carbon Fibres. J. Fluor. Chem. 2021, 251, 109887. [Google Scholar] [CrossRef]
- Lagow, R.J.; Shimp, L.A.; Lam, D.K.; Baddour, R.F. Synthesis of Poly(Carbon Monofluoride) in a Fluorine Plasma. Inorg. Chem. 1972, 11, 2568–2570. [Google Scholar] [CrossRef]
- Watanabe, N.; Izumi, A.; Nakajima, T. Preparation of Poly-(Dicarbon Monofluoride), (C2F)n from Exfoliated Graphite. J. Fluor. Chem. 1981, 18, 475–482. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.; Stopic, S.; Friedrich, B. Fluorination of Two-Dimensional Graphene: A Review. J. Fluor. Chem. 2022, 255–256, 109964. [Google Scholar] [CrossRef]
- Kang, W.; Li, S. Preparation of Fluorinated Graphene to Study Its Gas Sensitivity. RSC Adv. 2018, 8, 23459–23467. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liu, D.; Zhang, K.; Dong, C. Urea Modified Fluorinated Carbon Nanotubes: Unique Self-Dispersed Characteristic in Water and High Tribological Performance as Water-Based Lubricant Additives. New J. Chem. 2019, 43, 14684–14693. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakajima, T.; Touhara, H. Graphite Fluorides; Studies in Inorganic Chemistry; Elsevier Science: Burlington, VT, USA, 1988. [Google Scholar]
- Touhara, H.; Okino, F. Property Control of Carbon Materials by Fluorination. Carbon 2000, 38, 241–267. [Google Scholar] [CrossRef]
- Kita, Y.; Watanabe, N.; Fujii, Y. Chemical Composition and Crystal Structure of Graphite Fluoride. J. Am. Chem. Soc. 1979, 101, 3832–3841. [Google Scholar] [CrossRef]
- Hamwi, A.; Daoud, M.; Cousseins, J.C. Graphite Fluorides Prepared at Room Temperature 1. Synthesis and Characterization. Synth. Met. 1988, 26, 89–98. [Google Scholar] [CrossRef]
- Delbé, K.; Thomas, P.; Himmel, D.; Mansot, J.L.; Dubois, M.; Guérin, K.; Delabarre, C.; Hamwi, A. Tribological Properties of Room Temperature Fluorinated Graphite Heat-Treated Under Fluorine Atmosphere. Tribol. Lett. 2010, 37, 31–41. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, T.; Chen, Y.; Yang, F.; Huang, H.; Zhao, Y. Graphite Fluoride as a Novel Solider Lubricant Additive for Ultra-High-Molecular-Weight Polyethylene Composites with Excellent Tribological Properties. Lubricants 2023, 11, 403. [Google Scholar] [CrossRef]
- Herraiz, M.; Dubois, M.; Batisse, N.; Petit, E.; Thomas, P. Exfoliated Fluorinated Carbons with a Low and Stable Friction Coefficient. RSC Adv. 2019, 9, 13615–13622. [Google Scholar] [CrossRef]
- Chen, X.; Dubois, M.; Silvana Radescu, S.; Rawal, A.; Zhao, C. Liquid-phase exfoliation of F-diamane-like nanosheets. Carbon 2021, 175, 124–130. [Google Scholar] [CrossRef]
- Thomas, P.; Himmel, D.; Mansot, J.L.; Dubois, M.; Guérin, K.; Zhang, W.; Hamwi, A. Tribological Properties of Fluorinated Carbon Nanofibres. Tribol. Lett. 2009, 34, 49–59. [Google Scholar] [CrossRef]
- Thomas, P.; Mansot, J.L.; Molza, A.; Begarin, F.; Dubois, M.; Guérin, K. Friction Properties of Fluorinated Graphitized Carbon Blacks. Tribol. Lett. 2014, 56, 259–271. [Google Scholar] [CrossRef]
- Thomas, P.; Himmel, D.; Mansot, J.L.; Zhang, W.; Dubois, M.; Guérin, K.; Hamwi, A. Friction Properties of Fluorinated Carbon Nanodiscs and Nanocones. Tribol. Lett. 2011, 41, 353–362. [Google Scholar] [CrossRef]
- Fan, K.; Liu, X.; Liu, Y.; Li, Y.; Chen, Y.; Meng, Y.; Liu, X.; Feng, W.; Luo, L. Covalent Functionalization of Fluorinated Graphene through Activation of Dormant Radicals for Water-Based Lubricants. Carbon 2020, 167, 826–834. [Google Scholar] [CrossRef]
- Ma, L.; Li, Z.; Jia, W.; Hou, K.; Wang, J.; Yang, S. Microwave-Assisted Synthesis of Hydroxyl Modified Fluorinated Graphene with High Fluorine Content and Its High Load-Bearing Capacity as Water Lubricant Additive for Ceramic/Steel Contact. Colloids Surf. Physicochem. Eng. Asp. 2021, 610, 125931. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Song, H.; Liang, H.; Liu, D.; Dong, C.; Jia, W. Fluorinated Graphene Oxide Nanosheet: A Highly Efficient Water-Based Lubricated Additive. Tribol. Int. 2019, 140, 105867. [Google Scholar] [CrossRef]
- Wang, D.; Jia, X.; Tian, R.; Yang, J.; Su, Y.; Song, H. Tuning Fluorine Content of Fluorinated Graphene by an Ionothermal Synthesis Method for Achieving Excellent Tribological Behaviors. Carbon 2024, 218, 118649. [Google Scholar] [CrossRef]
- Chen, L.; Lei, J.; Wang, F.; Wang, G.; Feng, H. Facile Synthesis of Graphene Sheets from Fluorinated Graphite. RSC Adv. 2015, 5, 40148–40153. [Google Scholar] [CrossRef]
- He, J.; Ma, L.; Yang, Y.; Jia, W.; Zhou, Q.; Yang, S.; Wang, J. Tribological Properties of Physically Modified Fluorinated Graphene and Soluble Starch Hybrid as Water-Based Lubricating Additive System. Tribol. Int. 2023, 183, 108412. [Google Scholar] [CrossRef]
- Wan, C.; Ma, M. One-Step Exfoliation and Functionalization of Fluorinated Graphene Sheets from Fluoride Graphite by Ammonia Carbonate-Assisted Solid Ball Milling. J. Porous Mater. 2020, 27, 1319–1328. [Google Scholar] [CrossRef]
- Singh, S.; Tyagi, M.; Tyagi, A.K.; Kaicker, P.K.; Varshney, L. Development and Characterization of Graphite Fluoride Dry Lubrication System by Using Gamma Radiation. J. Polym. Mater. 2020, 36, 305–321. [Google Scholar] [CrossRef]
- Gupta, V.; Nakajima, T.; Ohzawa, Y.; Žemva, B. A Study on the Formation Mechanism of Graphite Fluorides by Raman Spectroscopy. J. Fluor. Chem. 2003, 120, 143–150. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Kharitonov, A.P.; Shul’ga, Y.M.; Zhigalina, O.M.; Knerel’man, E.I.; Dubois, M.; Brzhezinskaya, M.M.; Vinogradov, A.S.; Preobrazhenskii, A.B.; Zvereva, G.I.; et al. Fabrication and characterization of fluorinated single-walled carbon nanotubes. Nanotechnol. Russ. 2009, 4, 60–78. [Google Scholar] [CrossRef]
- Nomede-Martyr, N.; Bercion, Y.; Philippe, B.; Dubois, M.; Joseph, H.; Philippe, T. Moringa Oil With Pristine and Fluorinated Carbon Nanofibers as Additives for Lubrication. J. Tribol. 2021, 144, 051901. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Chekhova, G.N.; Pinakov, D.V.; Yushina, I.V.; Bulusheva, L.G. Optical Absorption and Photoluminescence of Partially Fluorinated Graphite Crystallites. Carbon 2022, 193, 98–106. [Google Scholar] [CrossRef]
- Kuriakose, A.K.; Margrave, J.L. Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite. J. Phys. Chem. 1965, 69, 2772–2775. [Google Scholar] [CrossRef]
- Osuna, S.; Torrent-Sucarrat, M.; Solà, M.; Geerlings, P.; Ewels, C.P.; Lier, G.V. Reaction Mechanisms for Graphene and Carbon Nanotube Fluorination. J. Phys. Chem. C 2010, 114, 3340–3345. [Google Scholar] [CrossRef]
- Miyake, S.; Kaneko, R.; Kikuya, Y.; Sugimoto, I. Micro-Tribological Studies on Fluorinated Carbon Films. J. Tribol. 1991, 113, 384–389. [Google Scholar] [CrossRef]
- Miyake, S.; Shindo, T.; Miyake, M. Friction Properties of Surface-Modified Polished Chemical-Vapor-Deposited Diamond Films under Boundary Lubrication with Water and Poly-Alpha Olefin. Tribol. Int. 2016, 102, 287–296. [Google Scholar] [CrossRef]
- Rubio-Roy, M.; Corbella, C.; Bertran, E.; Portal, S.; Polo, M.C.; Pascual, E.; Andújar, J.L. Effects of Environmental Conditions on Fluorinated Diamond-like Carbon Tribology. Diam. Relat. Mater. 2009, 18, 923–926. [Google Scholar] [CrossRef]
- Sen, F.G.; Qi, Y.; Alpas, A.T. Tribology of Fluorinated Diamond-like Carbon Coatings: First Principles Calculations and Sliding Experiments. Lubr. Sci. 2013, 25, 111–121. [Google Scholar] [CrossRef]
- Chen, X.; Li, J. Superlubricity of Carbon Nanostructures. Carbon 2020, 158, 1–23. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D Nanomaterials: A Review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Nomède-Martyr, N.; Disa, E.; Thomas, P.; Romana, L.; Mansot, J.-L.; Dubois, M.; Guérin, K.; Zhang, W.; Hamwi, A. Tribological Properties of Fluorinated Nanocarbons with Different Shape Factors. J. Fluor. Chem. 2012, 144, 10–16. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Miyoshi, K.; Street, K.W.; Tomasek, A.J.; Peng, H.; Liu, Y.; Margrave, J.L.; Khabashesku, V.N. Friction Properties of Surface-Fluorinated Carbon Nanotubes. Wear 2005, 259, 738–743. [Google Scholar] [CrossRef]
- Şahin, H.; Topsakal, M.; Ciraci, S. Structures of Fluorinated Graphene and Their Signatures. Phys. Rev. B 2011, 83, 115432. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Chen, X.; Luo, J. Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments. ACS Appl. Mater. Interfaces 2019, 11, 40470–40480. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Vacher, B.; Ohmae, N.; Martin, J.M.; Epicier, T. Anti-Wear and Friction Reducing Mechanisms of Carbon Nano-Onions as Lubricant Additives. Tribol. Lett. 2008, 30, 69–80. [Google Scholar] [CrossRef]
- Liu, X.-X.; Li, T.-S.; Liu, X.-J.; Lv, R.-G.; Cong, P.-H. An Investigation on the Friction of Oriented Polytetrafluoroethylene (PTFE). Wear 2007, 262, 1414–1418. [Google Scholar] [CrossRef]
- Biswas, S.K.; Vijayan, K. Friction and Wear of PTFE—A Review. Wear 1992, 158, 193–211. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, L.; Yao, Q.; Li, Q.; Zhang, M.; Xie, X.; Qiao, S.; Wang, G.; Ma, T.; Di, Z.; et al. Robust Ultra-Low-Friction State of Graphene via Moiré Superlattice Confinement. Nat. Commun. 2016, 7, 13204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Z.; Klausen, L.H.; Li, Q.; Dong, M. Friction Behaviors of Two-Dimensional Materials at the Nanoscale. Mater. Today Phys. 2022, 27, 100771. [Google Scholar] [CrossRef]
- Kwon, S.; Ko, J.-H.; Jeon, K.-J.; Kim, Y.-H.; Park, J.Y. Enhanced Nanoscale Friction on Fluorinated Graphene. Nano Lett. 2012, 12, 6043–6048. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, X.-Z.; Kim, S.-P.; Shenoy, V.B.; Sheehan, P.E.; Robinson, J.T.; Carpick, R.W. Fluorination of Graphene Enhances Friction Due to Increased Corrugation. Nano Lett. 2014, 14, 5212–5217. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, Y.; Yu, M.; Lang, H.; Cao, X.; Zou, K. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene. ACS Appl. Mater. Interfaces 2018, 10, 8214–8224. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Y.; Sun, J.; Wang, Y.; Qian, L.; Kim, S.H.; Chen, L. Inverse Relationship between Thickness and Wear of Fluorinated Graphene: “Thinner Is Better”. Nano Lett. 2022, 22, 6018–6025. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, T.; Lei, F.; Yang, M.; Li, D.; Huang, X.; Sun, D. Graphite Fluoride and Fluorographene as a New Class of Solid Lubricant Additives for High-performance Polyamide 66 Composites with Excellent Mechanical and Tribological Properties. Polym. Int. 2020, 69, 457–466. [Google Scholar] [CrossRef]
- Min, C.; He, Z.; Liang, H.; Liu, D.; Dong, C.; Song, H.; Huang, Y. High Mechanical and Tribological Performance of Polyimide Nanocomposite Reinforced by Fluorinated Graphene Oxide. Polym. Compos. 2020, 41, 1624–1635. [Google Scholar] [CrossRef]
- Liang, L.; Song, L.; Yang, Y.; Li, F.; Ma, Y. Tribological Properties of Polytetrafluoroethylene Improved by Incorporation of Fluorinated Graphene with Various Fluorine/Carbon Ratios Under Dry Sliding Condition. Tribol. Lett. 2021, 69, 21. [Google Scholar] [CrossRef]
- Li, P.; Li, T.; Yan, H. Mechanical, Tribological and Heat Resistant Properties of Fluorinated Multi-Walled Carbon Nanotube/Bismaleimide/Cyanate Resin Nanocomposites. J. Mater. Sci. Technol. 2017, 33, 1182–1186. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, E.; Zhong, H.; Wang, J.; Subedi, A.; Hu, K.; Hu, X. Characterization and Tribological Performances of Graphene and Fluorinated Graphene Particles in PAO. Nanomaterials 2021, 11, 2126. [Google Scholar] [CrossRef] [PubMed]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Ci, X.; Zhao, W.; Luo, J.; Wu, Y.; Ge, T.; Xue, Q.; Gao, X.; Fang, Z. How the Fluorographene Replaced Graphene as Nanoadditive for Improving Tribological Performances of GTL-8 Based Lubricant Oil. Friction 2021, 9, 488–501. [Google Scholar] [CrossRef]
- Ye, X.; Ma, L.; Yang, Z.; Wang, J.; Wang, H.; Yang, S. Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-based Lubricant. ACS Appl. Mater. Interfaces 2016, 8, 7483–7488. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Xue, Q. Fluorine and Sulfur Co-Doped Amorphous Carbon Films to Achieve Ultra-Low Friction under High Vacuum. Carbon 2016, 96, 411–420. [Google Scholar] [CrossRef]
- Qiang, L.; Zhang, B.; Gao, K.; Gong, Z.; Zhang, J. Hydrophobic, Mechanical, and Tribological Properties of Fluorine Incorporated Hydrogenated Fullerene-like Carbon Films. Friction 2013, 1, 350–358. [Google Scholar] [CrossRef]
- Salpekar, D.; Serles, P.; Colas, G.; Ma, L.; Yadav, S.; Hamidinejad, M.; Khabashesku, V.N.; Gao, G.; Swaminathan, V.; Vajtai, R.; et al. Multifunctional Applications Enabled by Fluorination of Hexagonal Boron Nitride. Small 2024, 2311836. [Google Scholar] [CrossRef]
- Sun, J.; Du, S. Application of Graphene Derivatives and Their Nanocomposites in Tribology and Lubrication: A Review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Yi, S.; Ge, X.; Chen, X.; Luo, J. Enhancement of Friction Performance of Fluorinated Graphene and Molybdenum Disulfide Coating by Microdimple Arrays. Carbon 2020, 167, 122–131. [Google Scholar] [CrossRef]
- Savjani, N.; Mercadillo, V.O.; Hodgeman, D.; Paterakis, G.; Deng, Y.; Vallés, C.; Anagnostopoulos, G.; Galiotis, C.; Bissett, M.A.; Kinloch, I.A. Tribology of Copper Metal Matrix Composites Reinforced with Fluorinated Graphene Oxide Nanosheets: Implications for Solid Lubricants in Mechanical Switches. ACS Appl. Nano Mater. 2023, 6, 8202–8213. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, R.L.; Sliney, H.E. Lubricating Characteristics of Polyimide Bonded Graphite Fluoride and Polyimide Thin Films. E Trans. 1973, 16, 189–196. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wang, J.; Yang, W.; Guo, P.; Li, M.; Liu, D.; Zeng, H.; Zhao, B. First-Principles Study on the Nanofriction Properties of Diamane: The Thinnest Diamond Film. Nanomaterials 2022, 12, 2939. [Google Scholar] [CrossRef] [PubMed]
- Bakharev, P.V.; Huang, M.; Saxena, M.; Lee, S.W.; Joo, S.H.; Park, S.O.; Dong, J.; Camacho-Mojica, D.C.; Jin, S.; Kwon, Y.; et al. Chemically Induced Transformation of Chemical Vapour Deposition Grown Bilayer Graphene into Fluorinated Single-Layer Diamond. Nat. Nanotechnol. 2020, 15, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Mattern, D.; Brunn, H. Toxicology of perfluorinated compounds. Environ. Sci. Eur. 2011, 23, 38. [Google Scholar] [CrossRef]
- Teo, W.Z.; Chua, C.K.; Sofer, Z.; Pumera, M. Fluorinated Nanocarbons Cytotoxicity. Chem.—Eur. J. 2015, 21, 13020–13026. [Google Scholar] [CrossRef] [PubMed]
Notation | Temperature (°C) or Method | F/C Range | Reference |
---|---|---|---|
(CF)n | 600–650 | 1 | [13,14,15,16] |
(C2F)n | 390–450 | 0.5 | [15] |
RTGF | RT followed by post-fluorination | 0.4–0.9 | [16,17] |
Graphite fluoride | Mechanochemistry with polyethylene | 0.5–0.6 | [18] |
Fluorinated Graphene | RT or exfoliation of (CF)n | 0.05–1.0 | [10,19] |
F-Diamane | Exfoliation | 0.5 | [20] |
Carbon nanofibers | 380–490 | 0.08–1.0 | [21] |
Graphitized carbon blacks | 340–480 | 0.08–0.89 | [22] |
Carbon Nanodiscs | 280–450 | 0.17–0.90 | [23] |
F-Graphene | Activation of dormant radicals | Very low | [24] |
F-Graphene | Microwave-assisted liquid-phase | 0.51 | [25] |
F-Graphene | Ionothermal synthesis | Supposed to be 1 | [26] |
F-Graphene | Hydrothermal reaction with hydrofluoric and nitric acids | 0.04–0.22 | [27] |
F-Graphene | Ultrasonicating fluorinated graphite in hydrazine hydrate | [28] | |
F-Graphene | Exfoliation | 0.62 | [29] |
F-Graphene | Mechanochemistry with ammonia carbonate | [30] | |
Graphite fluoride-PTFE | Defluorination through gamma radiation | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, G.; Nomède-Martyr, N.; Bilas, P.; Guérin, K.; Thomas, P.; Delbé, K.; Dubois, M. Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C 2025, 11, 6. https://doi.org/10.3390/c11010006
Haddad G, Nomède-Martyr N, Bilas P, Guérin K, Thomas P, Delbé K, Dubois M. Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C. 2025; 11(1):6. https://doi.org/10.3390/c11010006
Chicago/Turabian StyleHaddad, Guillaume, Nadiège Nomède-Martyr, Philippe Bilas, Katia Guérin, Philippe Thomas, Karl Delbé, and Marc Dubois. 2025. "Fluorination to Enhance the Tribological Properties of Carbonaceous Materials" C 11, no. 1: 6. https://doi.org/10.3390/c11010006
APA StyleHaddad, G., Nomède-Martyr, N., Bilas, P., Guérin, K., Thomas, P., Delbé, K., & Dubois, M. (2025). Fluorination to Enhance the Tribological Properties of Carbonaceous Materials. C, 11(1), 6. https://doi.org/10.3390/c11010006