An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors
Abstract
:1. Introduction
2. Environmental Relevance of Pesticides Monitoring
3. Environmental Monitoring of Pesticides Using Electrochemical Sensors Based on Carbon Nanotubes
3.1. Carbon Nanotubes Sensors
3.2. Phthalocyanine/Carbon Nanotubes Sensors
3.3. Molecularly Imprinted Polymers/Carbon Nanotubes Sensors
3.4. Ionic Liquid/Carbon Nanotubes Sensors
3.5. Metallic Nanoparticles/Carbon Nanotubes Sensors
3.6. β-Cyclodextrin/Carbon Nanotubes Sensors
3.7. Fullerene and Quantum Dots/Carbon Nanotubes Sensors
4. Conclusions, Challenges and Future Perspectives
Acknowledgments
Conflicts of Interest
References
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nano 2008, 3, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Demczyk, B.G.; Wang, Y.M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R.O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178. [Google Scholar] [CrossRef]
- Hong, S.; Myung, S. Nanotube electronics: A flexible approach to mobility. Nat. Nano 2007, 2, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Khabashesku, V.N.; Billups, W.E.; Margrave, J.L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res. 2002, 35, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, V.; Guldi, D.M. Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 2009, 38, 165–184. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 2015, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, M.; Quintana, M.; Rudolf, P.; Zerbetto, F.; Prato, M. Rolling up a graphene sheet. ChemPhysChem 2013, 14, 3447–3453. [Google Scholar] [CrossRef] [PubMed]
- Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Huang, J.-L.; Lieber, C.M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.; Jacques, D.; Qian, D.; Rantell, T. Multiwall carbon nanotubes: Synthesis and application. Acc. Chem. Res. 2002, 35, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for carbon nanotubes synthesis-review. J. Mater. Chem. 2011, 21, 15872–15884. [Google Scholar] [CrossRef]
- Mosch, H.L.K.S.; Akintola, O.; Plass, W.; Höppener, S.; Schubert, U.S.; Ignaszak, A. Specific surface versus electrochemically active area of the carbon/polypyrrole capacitor: Correlation of ion dynamics studied by an electrochemical quartz crystal microbalance with bet surface. Langmuir 2016, 32, 4440–4449. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Nam, K.-W.; Ma, S.B.; Kim, K.B. Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon 2006, 44, 1963–1968. [Google Scholar] [CrossRef]
- Pifferi, V.; Cappelletti, G.; Bari, C.D.; Meroni, D.; Spadavecchia, F.; Falciola, L. Multi-walled carbon nanotubes (mwcnts) modified electrodes: Effect of purification and functionalization on the electroanalytical performances. Electrochim. Acta 2014, 146, 403–410. [Google Scholar] [CrossRef]
- Sang, Y.; Fu, A.; Li, H.; Zhang, J.; Li, Z.; Li, H.; Zhao, X.S.; Guo, P. Experimental and theoretical studies on the effect of functional groups on carbon nanotubes to its oxygen reduction reaction activity. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 476–484. [Google Scholar] [CrossRef]
- Souza, L.P.; Calegari, F.; Zarbin, A.J.; Marcolino-Júnior, L.H.; Bergamini, M.R.F. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. J. Agric. Food Chem. 2011, 59, 7620–7625. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, L.M.; Agustini, D.; Figueiredo-Filho, L.C.; Banks, C.E.; Marcolino-Junior, L.H.; Bergamini, M.F. Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sens. Actuators B 2017, 241, 978–984. [Google Scholar] [CrossRef]
- Eguílaz, M.; Gutierrez, F.; González-Domínguez, J.M.; Martínez, M.T.; Rivas, G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of nadh-based biosensors. Biosens. Bioelectron. 2016, 86, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, K.; Burghard, M. Electrochemically functionalized carbon nanotubes for device applications. J. Mater. Chem. 2008, 18, 3071–3083. [Google Scholar] [CrossRef]
- Husmann, S.; Zarbin, A.J.G. Design of a prussian blue analogue/carbon nanotube thin-film nanocomposite: Tailored precursor preparation, synthesis, characterization, and application. Chem. A Eur. J. 2016, 22, 6643–6653. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-N.; Shan, D.; Cosnier, S.; Le Goff, A. Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties. Chem. A Eur. J. 2012, 18, 11564–11568. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Dong, S. Metal nanomaterials and carbon nanotubes-synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 2008, 18, 1279–1295. [Google Scholar] [CrossRef]
- Lawal, A.T. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater. Res. Bull. 2016, 73, 308–350. [Google Scholar] [CrossRef]
- Yang, N.; Chen, X.; Ren, T.; Zhang, P.; Yang, D. Carbon nanotube based biosensors. Sens. Actuators B 2015, 207, 690–715. [Google Scholar] [CrossRef]
- Caetano, F.R.; Felippe, L.B.; Zarbin, A.J.G.; Bergamini, M.F.; Marcolino-Junior, L.H. Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sens. Actuators B 2017, 243, 43–50. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Pumera, M. The electrochemistry of carbon nanotubes: Fundamentals and applications. Chem. A Eur. J. 2009, 15, 4970–4978. [Google Scholar] [CrossRef] [PubMed]
- Banks, C.E.; Moore, R.R.; Davies, T.J.; Compton, R.G. Investigation of modified basal plane pyrolytic graphite electrodes: Definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem. Commun. 2004, 1804–1805. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Chakrabarti, S.; Dai, L. Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? Angew. Chem. Int. Ed. 2008, 47, 5446–5450. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M.; Sasaki, T.; Iwai, H. Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes. Chem. Asian J. 2008, 3, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
- Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; del Valle, M.; Alegret, S. New materials for electrochemical sensing vi: Carbon nanotubes. TrAC Trends Anal. Chem. 2005, 24, 826–838. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.-G.; Yu, X.-Y.; Wang, L.; Liu, J.-H.; Huang, X.-J. O2-Plasma oxidized multi-walled carbon nanotubes for cd(II) and pb(II) detection: Evidence of adsorption capacity for electrochemical sensing. Electrochem. Commun. 2011, 13, 1506–1509. [Google Scholar] [CrossRef]
- Mani, S.; Cheemalapati, S.; Chen, S.-M.; Devadas, B. Anti-tuberculosis drug pyrazinamide determination at multiwalled carbon nanotubes/graphene oxide hybrid composite fabricated electrode. Int. J. Electrochem. Sci. 2015, 10, 7049–7062. [Google Scholar]
- De Oliveira, R.; Hudari, F.; Franco, J.; Zanoni, M.V.B. Carbon nanotube-based electrochemical sensor for the determination of anthraquinone hair dyes in wastewaters. Chemosensors 2015, 3, 22–35. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, D.; Guo, X.; Correa, J.; Riehl, B.L.; Heineman, W.R. Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: Europium. Anal. Chem. 2014, 86, 4354–4361. [Google Scholar] [CrossRef] [PubMed]
- Govindhan, M.; Lafleur, T.; Adhikari, B.R.; Chen, A. Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 2015, 27, 902–909. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, T.-F.; Wan, Y.-W.; Chen, S.-Y. Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchim. Acta 2009, 165, 307–311. [Google Scholar] [CrossRef]
- Janegitz, B.C.; Figueiredo-Filho, L.C.S.; Marcolino-Junior, L.H.; Souza, S.P.N.; Pereira-Filho, E.R.; Fatibello-Filho, O. Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination. J. Electroanal. Chem. 2011, 660, 209–216. [Google Scholar] [CrossRef]
- Janegitz, B.C.; Marcolino-Junior, L.H.; Campana-Filho, S.P.; Faria, R.C.; Fatibello-Filho, O. Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens. Actuators B 2009, 142, 260–266. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, R.; Salunkhe, D. Toxicological implications of pesticides: Their toxic effects on seeds of food plants. Toxicology 1975, 3, 269–285. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef]
- Domínguez, I.; Romero González, R.; Arrebola Liébanas, F.J.; Martínez Vidal, J.L.; Garrido Frenich, A. Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends Environ. Anal. Chem. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Vieira, D.C.; Noldin, J.A.; Deschamps, F.C.; Resgalla, C., Jr. Ecological risk analysis of pesticides used on irrigated rice crops in southern brazil. Chemosphere 2016, 162, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Suddaby, L.A.; Beulke, S.; van Beinum, W.; Oliver, R.G.; Kuet, S.; Brown, C.D. Long-term experiments to investigate irreversibility in sorption of pesticides to soil. Chemosphere 2016, 162, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gallart-Mateu, D.; Armenta, S.; de la Guardia, M. Indoor and outdoor determination of pesticides in air by ion mobility spectrometry. Talanta 2016, 161, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Battaglin, W.A.; Smalling, K.L.; Anderson, C.; Calhoun, D.; Chestnut, T.; Muths, E. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the united states. Sci. Total Environ. 2016, 566–567, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Dong, F.; Xu, J.; Liu, X.; Wu, X.; Chen, Z.; Pan, X.; Zheng, Y. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water. J. Chromatogr. A 2016, 1435, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Harrison, V.; Mackenzie Ross, S. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ. Res. 2016, 151, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Campos, É.; Freire, C. Exposure to non-persistent pesticides and thyroid function: A systematic review of epidemiological evidence. Int. J. Hyg. Environ. Health 2016, 219, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Tahmasbi, A.; Valizadeh, R.; Naserian, A.; Soni, A. Organophosphate pesticides: A general review. Agric. Sci. Res. J. 2012, 2, 512–522. [Google Scholar]
- Iyaniwura, T.T. Prevention and management of human toxicosis resulting from pesticide use—A survey. Int. J. Environ. Stud. 1991, 38, 115–121. [Google Scholar] [CrossRef]
- Jaga, K.; Dharmani, C. Ocular toxicity from pesticide exposure: A recent review. Environ. Health Prev. Med. 2006, 11, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Wilkinson, S.C.; Blain, P.G.; Dunn, M.; Aust, G.A.; Williams, F.M. Use of a human skin in vitro model to investigate the influence of ”every-day” clothing and skin surface decontamination on the percutaneous penetration of organophosphates. Toxicol. Lett. 2014, 229, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, L.; Hernández-Domínguez, D.; Martín, M.T.; Nozal, M.J.; Higes, M.; Bernal Yagüe, J.L. Residues of neonicotinoids and their metabolites in honey and pollen from sunflower and maize seed dressing crops. J. Chromatogr. A 2016, 1428, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, I.E.; Prado-Ochoa, M.G.; Muñoz-Guzmán, M.A.; Vázquez-Valadez, V.H.; Velázquez-Sánchez, A.M.; Avila-Suárez, B.L.; Cuenca-Verde, C.; Angeles, E.; Alba-Hurtado, F. Effect of new ethyl and methyl carbamates on rhipicephalus microplus larvae and adult ticks resistant to conventional ixodicides. Vet. Parasitol. 2014, 199, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-K.; Jeong, Y.; Lee, S.; Jeong, W.; Choy, E.-J.; Kang, C.-K.; Lee, W.-C.; Kim, S.-J.; Moon, H.-B. Persistent organochlorines in 13 shark species from offshore and coastal waters of korea: Species-specific accumulation and contributing factors. Ecotoxicol. Environ. Saf. 2015, 115, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, Z.; Lan, X.; Chen, Y.; Zhang, L.; Ji, R.; Wang, L. Determination of carbendazim and metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry. Measurement 2015, 73, 313–317. [Google Scholar] [CrossRef]
- Xiao, Z.; He, M.; Chen, B.; Hu, B. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta 2016, 156–157, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Afshar Mogaddam, M.R.; Rezaee Aghdam, S.; Nouri, N.; Bamorrowat, M. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection. Food Chem. 2016, 212, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Mol, H.G.J.; Tienstra, M.; Zomer, P. Evaluation of gas chromatography—Electron ionization—Full scan high resolution orbitrap mass spectrometry for pesticide residue analysis. Anal. Chim. Acta 2016, 935, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pinto, L.; Véras, G.; de Araújo Gomes, A.; Culzoni, M.J.; Ugulino de Araújo, M.C.; Goicoechea, H.C. Highly sensitive quantitation of pesticides in fruit juice samples by modeling four-way data gathered with high-performance liquid chromatography with fluorescence excitation-emission detection. Talanta 2016, 154, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.A.T.; Matos, C.A.; de Resende, M.F.; Prado, R.B.; Donagemma, R.A.; Netto, A.D.P. Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection. Ecotoxicol. Environ. Saf. 2016, 133, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Nortes-Méndez, R.; Robles-Molina, J.; López-Blanco, R.; Vass, A.; Molina-Díaz, A.; Garcia-Reyes, J.F. Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry. Talanta 2016, 158, 222–228. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Dualde, P.; Yusà, V.; Coscollà, C. Retrospective analysis of pesticide metabolites in urine using liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2016, 160, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Apetrei, C.; Apetrei, I.M.; Saja, J.A.D.; Rodriguez-Mendez, M.L. Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants. Sensors 2011, 11, 1328–1344. [Google Scholar] [CrossRef] [PubMed]
- İnam, R.; Bilgin, C. Square wave voltammetric determination of methiocarb insecticide based on multiwall carbon nanotube paste electrode. J. Appl. Electrochem. 2013, 43, 425–432. [Google Scholar] [CrossRef]
- Mercan, H.; İnam, R.; Aboul-Enein, H.Y. Square wave adsorptive stripping voltammetric determination of cyromazine insecticide with multi-walled carbon nanotube paste electrode. Anal. Lett. 2011, 44, 1392–1404. [Google Scholar] [CrossRef]
- Siswana, M.; Ozoemena, K.; Nyokong, T. Electrocatalytic detection of amitrole on the multi-walled carbon nanotube—Iron (II) tetra-aminophthalocyanine platform. Sensors 2008, 8, 5096. [Google Scholar] [CrossRef] [PubMed]
- Mugadza, T.; Nyokong, T. Electrocatalytic oxidation of amitrole and diuron on iron (II) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochim. Acta 2010, 55, 2606–2613. [Google Scholar] [CrossRef]
- Rahemi, V.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. Electrochemical determination of the herbicide bentazone using a carbon nanotube β-cyclodextrin modified electrode. Electroanalysis 2013, 25, 2360–2366. [Google Scholar] [CrossRef]
- Moraes, F.C.; Mascaro, L.H.; Machado, S.A.; Brett, C.M. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 2009, 79, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Sundari, P.L.A.; Palaniappan, S.P.; Manisankar, P. Enhanced sensing of carbendazim, a fungicide on functionalized multiwalled carbon nanotube modified glassy carbon electrode and its determination in real samples. Anal. Lett. 2010, 43, 1457–1470. [Google Scholar] [CrossRef]
- Teadoum, D.N.; Noumbo, S.K.; Arnaud, K.T.; Ranil, T.T.; Ze Mvondo, A.D.; Tonle, I.K. Square wave voltammetric determination of residues of carbendazim using a fullerene/multiwalled carbon nanotubes/nafion/coated glassy carbon electrode. Int. J. Electrochem. 2016, 2016, 7839708. [Google Scholar] [CrossRef]
- Luo, S.; Wu, Y.; Gou, H. A voltammetric sensor based on go–mwnts hybrid nanomaterial-modified electrode for determination of carbendazim in soil and water samples. Ionics 2013, 19, 673–680. [Google Scholar] [CrossRef]
- Ribeiro, W.F.; Selva, T.M.G.; Lopes, I.C.; Coelho, E.C.S.; Lemos, S.G.; de Abreu, F.C.; do Nascimento, V.B.; de Araújo, M.C.U. Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with a multiwalled carbon nanotubes modified electrode. Anal. Methods 2011, 3, 1202–1206. [Google Scholar] [CrossRef]
- Li, J.; Chi, Y. Determination of carbendazim with multiwalled carbon nanotubes-polymeric methyl red film modified electrode. Pestic. Biochem. Physiol. 2009, 93, 101–104. [Google Scholar] [CrossRef]
- Sundari, P.A.; Manisankar, P. Development of nano poly(3-methyl thiophene)/multiwalled carbon nanotubes sensor for the efficient detection of some pesticides. J. Braz. Chem. Soc. 2011, 22, 746–755. [Google Scholar] [CrossRef]
- Mani, V.; Devasenathipathy, R.; Chen, S.-M.; Wu, T.-Y.; Kohilarani, K. High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron. Ionics 2015, 21, 2675–2683. [Google Scholar] [CrossRef]
- Rahemi, V.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. Electrochemical sensor for simultaneous determination of herbicide mcpa and its metabolite 4-chloro-2-methylphenol. Application to photodegradation environmental monitoring. Environ. Sci. Pollut. Res. 2015, 22, 4491–4499. [Google Scholar] [CrossRef] [PubMed]
- Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J. Enhanced host–guest electrochemical recognition of herbicide mcpa using a β-cyclodextrin carbon nanotube sensor. Talanta 2012, 99, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Xiao, F.; Liu, L.; Zhao, F.; Zeng, B. Sensitive voltammetric response of methylparathion on single-walled carbon nanotube paste coated electrodes using ionic liquid as binder. Sens. Actuators B 2008, 132, 34–39. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, W.-D.; Chen, C.-H.; Yu, Y.-X. Electrochemical determination of methyl parathion at a pd/mwcnts-modified electrode. Microchim. Acta 2010, 171, 57–62. [Google Scholar] [CrossRef]
- Feng, S.; Yang, R.; Ding, X.; Li, J.; Guo, C.; Qu, L. Sensitive electrochemical sensor for the determination of pentachlorophenol in fish meat based on znse quantum dots decorated multiwall carbon nanotubes nanocomposite. Ionics 2015, 21, 3257–3266. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Q.; Zhang, M.; Zhang, S.; Zhang, L. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode. Food Chem. 2015, 187, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, P.; Zhang, X.; Wu, K. Electrochemical sensor for rapid detection of triclosan using a multiwall carbon nanotube film. J. Agric. Food Chem. 2009, 57, 9403–9407. [Google Scholar] [CrossRef] [PubMed]
- Rather, J.A.; De Wael, K. C60-functionalized mwcnt based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater. Sens. Actuators B 2012, 171–172, 907–915. [Google Scholar] [CrossRef]
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D. Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes. Microchim. Acta 2013, 180, 49–58. [Google Scholar] [CrossRef]
- Han, H.; Li, J.-Z.; Pang, X.-Z. Electrochemical sensor using glassy carbon electrode modified with hpmαfp/ppy/gce composite film for determination of ofloxacin. Int. J. Electrochem. Sci 2013, 8, 9060–9070. [Google Scholar]
- Wong, A.; Sotomayor, M.D.P.T. Biomimetic sensor based on 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride and mwcnt for selective detection of 2,4-d. Sens. Actuators B 2013, 181, 332–339. [Google Scholar] [CrossRef]
- Khadem, M.; Faridbod, F.; Norouzi, P.; Foroushani, A.R.; Ganjali, M.R.; Shahtaheri, S.J. Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples. J. Iran. Chem. Soc. 2016, 13, 2077–2084. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Alexander, S. Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide. Biosens. Bioelectron. 2015, 64, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, S.; Latif, U.; Dickert, F.L. Plastic antibodies as chemical sensor material for atrazine detection. Sens. Actuators B 2011, 160, 227–233. [Google Scholar] [CrossRef]
- Gan, T.; Lv, Z.; Sun, Y.; Shi, Z.; Sun, J.; Zhao, A. Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@ sns2-assisted signal amplification. J. Appl. Electrochem. 2016, 46, 389–401. [Google Scholar] [CrossRef]
- Luo, M.; Liu, D.; Zhao, L.; Han, J.; Liang, Y.; Wang, P.; Zhou, Z. A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal. Chim. Acta 2014, 852, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, F.C.; Elisa Ravanini, A.; Silva, T.A.; Janegitz, B.C.; Zucolotto, V.; Fatibello-Filho, O. A novel architecture based upon multi-walled carbon nanotubes and ionic liquid to improve the electroanalytical detection of ciprofibrate. Analyst 2014, 139, 3961–3967. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Sambasevam, K.; Mohamad, S.; Sarih, N.; Ismail, N. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Ferancová, A.; Labuda, J. Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem. 2001, 370, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, A.; Guo, Y.; Dong, C. Electrochemical sensor for ultrasensitive determination of isoquercitrin and baicalin based on dm-β-cyclodextrin functionalized graphene nanosheets. Biosens. Bioelectron. 2014, 58, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Luo, C.; Sun, M.; Li, L.; Duan, H. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/au nanoparticles composites for chrysoidine analysis. Electrochim. Acta 2014, 130, 519–525. [Google Scholar] [CrossRef]
Analyte | Electrode | Linear Range (mol·L−1) | Limit of Detection (mol·L−1) | Reference |
---|---|---|---|---|
Amitrole | FeTAPc-MWCNT/BPPGE | – | 5.0 × 10−10 | Siswana et al. 2008 [77] |
Amitrole and diuron | FeTAPc-SWCNT/GCE | 5.0 × 10−5–1.0 × 10−4 | 2.1 × 10−7 and 2.6 × 10−7 | Mugadza et al. 2010 [78] |
Bentazone | PANI-β-CD/fMWCNT/GCE | 1.0 × 10−5–8.0 × 10−5 | 1.6 × 10−6 | Rahemi et al. 2013 [79] |
6-benzylaminopurine | MIP-MWNT@SnS2/GCE | 1.0 ×10−10–1.0 × 10−2 | 5.0 × 10−11 | Gan et al. 2016 |
Carbaryl | MWCNT/CoPc/GC | 3.3 × 10−7–6.6 × 10−6 | 5.5 × 10−9 | Moraes et al. 2009 [80] |
Carbendazim | FMWCNTs/GCE | 5.2 × 10−11–2.6 × 10−4 | 5.2 × 10−11 | Sundari et al. 2010 [81] |
Carbendazim | fullerene/MWCNT/Nafion/GCE | 2.0 × 10−8–3.5 × 10−7 | 1.7 × 10−8 | Teadoum et al. 2016 [82] |
Carbendazim | GO–MWNTs/GC | 1.0 × 10−8–4.0 × 10−6 | 5.0 × 10−9 | Luo et al. 2013 [83] |
Carbendazim | MWCNT/GCE | 2.6 × 10−5–3.1 × 10−6 | 5.5 × 10−8 | Ribeiro et al. 2011 [84] |
Carbendazim | MWNT-PMRE | 2.0 × 10−7–1.0 × 10−5 | 9.0 × 10−9 | Li et al. 2009 [85] |
Cyromazine | MWCNTPE | 2.5 × 10−6–5.0 × 10−4 | 7.2 × 10−7 | Mercan et al. 2011 [76] |
Cypermethrin | P3MT/MWCNT/GCE | 3.6 × 10−8–6.0 × 10−7 | 3.6 × 10−12 | Sundari et al. 2011 [86] |
Deltamethrin | P3MT/MWCNT/GCE | 3.8 × 10−8–4.9 × 10−7 | 3.8 × 10−12 | Sundari et al. 2011 [86] |
Dicofol | P3MT/MWCNT/GCE | 1.4 × 10−7–6.7 × 10−7 | 1.4 × 10−11 | Sundari et al. 2011 [86] |
Diuron and fenuron | GO–MWCNTs/GCE | 9.0 × 10−6–3.8 × 10−4 and 9.0 × 10−7–4.7 × 10−5 | 1.5 × 10−6 and 3.5 × 10−7 | Mani et al. 2015 [87] |
2,4-dichlorophenoxyacetic acid | FePy-MWCNT/CPE | 9.9 × 10−6–1.4 × 10−4 | 2.1 × 10−6 | Wong et al. 2013 |
Fenvalerate | P3MT/MWCNT/GCE | 1.4 × 10−7–5.9 × 10−7 | 1.4 × 10−11 | Sundari et al. 2011 [86] |
Isoproturon | P3MT/MWCNT/GCE | 3.4 × 10−7–1.2 × 10−6 | 3.4 × 10−11 | Sundari et al. 2011 [86] |
Lindane | MIP-MWCNT/Cu | 1.0 × 10−10–1.0 × 10−3 | 1.0 × 10−10 | Anirudhan et al. 2015 |
MCPA and 4-chloro-2-methylphenol | PANI-β-CD/fMWCNT/GCE | 1.0 × 10−5–5.0 × 10−5 | 1.1 × 10−6 and 1.9 × 10−6 | Rahemi et al. 2015 [88] |
MCPA | PANI-β-CD/fMWCNT/GCE | 1.0 × 10−5–1.0 × 10−4 | 9.9 × 10−7 | Rahemi et al. 2012 [89] |
Methiocarb | CNT/PE | 6.7 × 10−6–2.6 × 10−4 | 2.0 × 10−6 | Inam et al. 2013 [75] |
Methyl-parathion | BMIMPF6–SWNT/GCE | 2.0 × 10−9–4.0 × 10−6 | 1.0 × 10−9 | Fan et al. 2008 [90] |
Methyl-parathion | Au/CNTs/GCE | 3.8 × 10−7–5.3 × 10−5 | 1.9 × 10−7 | Zhang et al. 2009 [42] |
Methyl-parathion | Pd/MWCNTs/GC | 3.4 × 10−7–4.8 × 10−5 | 1.7 × 10−7 | Huang et al. 2010 [91] |
Pentachlorophenol | QDs-MWCNT/GCE | 8.0 × 10−8–4.0 × 10−6 | 2.0 × 10−9 | Feng et al. 2015 [92] |
Pyrimethanil | IL-MWCNT/GCE | 1.0 × 10−7–1.0 × 10−4 | 1.6 × 10−8 | Yang et al. 2015 [93] |
Triclosan | MWCNT/GCE | 1.7 × 10−7–6.0 × 10−6 | 5.7 × 10−8 | Yang et al. 2009 [94] |
Vinclozolin | C60–MWCNTs/GCE | 2.5 × 10−6–8.8 × 10−6 | 9.1 × 10−8 | Rather et al. 2012 [95] |
Voltage | P3MT/MWCNT/GCE | 3.4 × 10−7–1.2 × 10−6 | 3.4 × 10−11 | Sundari et al. 2011 [86] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, A.; Silva, T.A.; Caetano, F.R.; Bergamini, M.F.; Marcolino-Junior, L.H.; Fatibello-Filho, O.; Janegitz, B.C. An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. C 2017, 3, 8. https://doi.org/10.3390/c3010008
Wong A, Silva TA, Caetano FR, Bergamini MF, Marcolino-Junior LH, Fatibello-Filho O, Janegitz BC. An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. C. 2017; 3(1):8. https://doi.org/10.3390/c3010008
Chicago/Turabian StyleWong, Ademar, Tiago A. Silva, Fábio R. Caetano, Márcio F. Bergamini, Luiz H. Marcolino-Junior, Orlando Fatibello-Filho, and Bruno C. Janegitz. 2017. "An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors" C 3, no. 1: 8. https://doi.org/10.3390/c3010008
APA StyleWong, A., Silva, T. A., Caetano, F. R., Bergamini, M. F., Marcolino-Junior, L. H., Fatibello-Filho, O., & Janegitz, B. C. (2017). An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. C, 3(1), 8. https://doi.org/10.3390/c3010008