Detection of Redox Properties of (6,5)-Enriched Single-Walled Carbon Nanotubes Using Potassium Permanganate (KMnO4)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ren, Z.F.; Huang, Z.P.; Wang, D.Z.; Wen, J.G. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 1999, 75, 1086–1088. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queipo, P.; Nasibulin, A.G.; Shandakov, S.D.; Jiang, H.; Gonzalez, D.; Kauppinen, E.I. CVD synthesis and radial deformations of large diameter single-walled CNTs. Curr. Appl. Phys. 2009, 9, 301–305. [Google Scholar] [CrossRef]
- Mondal, K.C.; Strydom, A.M.; Erasmus, R.M.; Keartland, J.M.; Coville, N.J. Physical properties of CVD boron-doped multiwalled carbon nanotubes. Mater. Chem. Phys. 2008, 111, 386–390. [Google Scholar] [CrossRef]
- Haufler, R.E.; Conceicao, J.; Chibante, L.P.F.; Chai, Y.; Byrne, N.E.; Flanagan, S.; Haley, M.M.; O’Brien, S.C.; Pan, C.; Xiao, Z.; et al. Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 1990, 94, 8634–8636. [Google Scholar] [CrossRef]
- Saito, Y.; Nishikubo, K.; Kawabata, K.; Matsumoto, T. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J. Appl. Phys. 1996, 80, 3062–3067. [Google Scholar] [CrossRef]
- Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.B.; Rodríguez-Macías, F.J.; Boul, P.J.; Lu, A.H.; Heymann, D.; Colbert, D.T.; et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys.-Mater. Sci. Process. 1998, 67, 29–37. [Google Scholar] [CrossRef]
- Haque, A.; Sachan, R.; Narayan, J. Synthesis of diamond nanostructures from carbon nanotube and formation of diamond-CNT hybrid structures. Carbon 2019, 150, 388–395. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A.; Hague, A. Pseudo-topotactic growth of diamond nanofibers. Acta Mater. 2019, 178, 179–185. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Ivchenko, E.L.; Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 2002, 66, 9. [Google Scholar] [CrossRef] [Green Version]
- Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Sawada, S.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Huang, J.L.; Lieber, C.M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pehrsson, P.E.; Chen, L.; Zhang, R.; Zhao, W. Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 2007, 111, 8638–8643. [Google Scholar] [CrossRef]
- Hain, T.C.; Kröker, K.; Sticha, D.G.; Hertel, T. Influence of DNA conformation on the dispersion of SWNTs: Single-strand DNA vs. hairpin DNA. Soft Matter 2012, 8, 2820–2823. [Google Scholar] [CrossRef]
- Tu, X.M.; Pehrsson, P.E.; Zhao, W. Redox reaction of DNA-Encased HiPco carbon nanotubes with hydrogen peroxide: A near infrared optical sensitivity and kinetics study. J. Phys. Chem. C 2007, 111, 17227–17231. [Google Scholar] [CrossRef]
- Zhao, W.; Song, C.H.; Pehrsson, P.E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418–12419. [Google Scholar] [CrossRef] [Green Version]
- Song, C.H.; Pehrsson, P.E.; Zhao, W. Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 2005, 109, 21634–21639. [Google Scholar] [CrossRef]
- Polo, E.; Kruss, S. Impact of Redox-Active Molecules on the Fluorescence of Polymer-Wrapped Carbon Nanotubes. J. Phys. Chem. C 2016, 120, 3061–3070. [Google Scholar] [CrossRef]
- Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smalley, R.E.; Schmidt, J.; Talmon, Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 1379–1382. [Google Scholar] [CrossRef]
- Ming, Z.; Diner, B.A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 15490–15494. [Google Scholar]
- Ishibashi, Y.; Ito, M.; Homma, Y.; Umemura, K. Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence. Colloids Surf. B-Biointerfaces 2018, 161, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, Y.; Ohura, S.; Umemura, K. Differences in the response of the near-infrared absorbance spectra of single-walled carbon nanotubes; Effects of chirality and wrapping polymers. Colloids Surf. B-Biointerfaces 2018, 172, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, T.; Kawashima, T.; Nii, D.; Ozasa, K.; Umemura, K. Kelvin Probe Force Microscopy of Single-walled Carbon Nanotubes Modified with DNA or Poly(ethylene glycol). Chem. Lett. 2013, 42, 666–668. [Google Scholar] [CrossRef]
- Hayashida, T.; Umemura, K. Surface morphology of hybrids of double-stranded DNA and single-walled carbon nanotubes studied by atomic force microscopy. Colloids Surf. B-Biointerfaces 2013, 101, 49–54. [Google Scholar] [CrossRef]
- Nii, D.; Hayashida, T.; Yamaguchi, Y.; Ikawa, S.; Shibata, T.; Umemura, K. Selective binding of single-stranded DNA-binding proteins onto DNA molecules adsorbed on single-walled carbon nanotubes. Colloids Surf. B-Biointerfaces 2014, 121, 325–330. [Google Scholar] [CrossRef]
- Pheomphun, P.; Treesubsuntorn, C.; Thirayetyan, P. Effect of exogenous catechin on alleviating O-3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. Ecotoxicol. Environ. Saf. 2019, 180, 374–383. [Google Scholar] [CrossRef] [PubMed]
KMnO4 Final Concentration (µM) | Peak Absorbance | ||||
---|---|---|---|---|---|
Initial State | KMnO4 Addition | Change Rate from Initial State | Catechin Addition | Change Rate from KMnO4 Addition | |
1.00 | 0.465 ± 0.003 | 0.321 ± 0.009 | −31.1 ± 1.22% | 0.462 ± 0.003 | 44.2 ± 2.46% |
0.50 | 0.466 ± 0.004 | 0.354 ± 0.004 | −23.9 ± 0.18% | 0.463 ± 0.004 | 30.7 ± 0.43% |
0.25 | 0.469 ± 0.004 | 0.406 ± 0.005 | −13.5 ± 0.31% | 0.467 ± 0.004 | 14.9 ± 0.38% |
0.17 | 0.466 ± 0.005 | 0.425 ± 0.004 | −8.72 ± 0.11% | 0.463 ± 0.005 | 8.72 ± 0.11% |
0.10 | 0.467 ± 0.003 | 0.449 ± 0.001 | −3.97 ± 0.43% | 0.465 ± 0.003 | 3.53 ± 0.51% |
0.05 | 0.467 ± 0.003 | 0.459 ± 0.003 | −1.61 ± 0.01% | 0.464 ± 0.003 | 0.915 ± 0.03% |
KMnO4 Final Concentration (µM) | Peak Wavelength (nm) | ||||
Initial State | KMnO4 Addition | Shift from Initial State | Catechin Addition | Shift from Initial State | |
1.00 | 992.0 ± 0.000 | 985.5 ± 1.886 | −6.5 ± 1.540 | 992.0 ± 0.000 | 0.0 ± 0.000 |
0.50 | 992.0 ± 0.000 | 988.0 ± 0.816 | −4.0 ± 0.667 | 992.0 ± 0.000 | 0.0 ± 0.000 |
0.25 | 992.0 ± 0.000 | 990.0 ± 0.000 | −2.0 ± 0.000 | 992.0 ± 0.000 | 0.0 ± 0.000 |
0.17 | 992.0 ± 0.000 | 991.0 ± 0.000 | −1.0 ± 0.000 | 992.0 ± 0.000 | 0.0 ± 0.000 |
0.10 | 992.0 ± 0.000 | 991.0 ± 0.471 | −1.0 ± 0.000 | 992.0 ± 0.000 | 0.0 ± 0.000 |
0.05 | 992.0 ± 0.000 | 992.0 ± 0.000 | 0.0 ± 0.000 | 992.0 ± 0.000 | 0.0 ± 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsukawa, Y.; Umemura, K. Detection of Redox Properties of (6,5)-Enriched Single-Walled Carbon Nanotubes Using Potassium Permanganate (KMnO4). C 2020, 6, 30. https://doi.org/10.3390/c6020030
Matsukawa Y, Umemura K. Detection of Redox Properties of (6,5)-Enriched Single-Walled Carbon Nanotubes Using Potassium Permanganate (KMnO4). C. 2020; 6(2):30. https://doi.org/10.3390/c6020030
Chicago/Turabian StyleMatsukawa, Yuji, and Kazuo Umemura. 2020. "Detection of Redox Properties of (6,5)-Enriched Single-Walled Carbon Nanotubes Using Potassium Permanganate (KMnO4)" C 6, no. 2: 30. https://doi.org/10.3390/c6020030
APA StyleMatsukawa, Y., & Umemura, K. (2020). Detection of Redox Properties of (6,5)-Enriched Single-Walled Carbon Nanotubes Using Potassium Permanganate (KMnO4). C, 6(2), 30. https://doi.org/10.3390/c6020030