Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washcoat Slurries Preparation
2.2. Catalysts Preparation
2.3. Catalysts Characterization
2.4. Catalytic Activity Tests
2.5. Kinetic Measurements
3. Results and Discussion
3.1. Characterization Results
3.2. Activity Tests Results
3.3. Discussion
3.4. Kinetic Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhat, S.A.; Sadhukhan, J. Process Intensification Aspects for Steam Methane Reforming: An Overview. AIChE J. 2009, 55, 408–422. [Google Scholar] [CrossRef]
- Angeli, S.D.; Turchetti, L.; Monteleone, G.; Lemonidou, A. Catalyst development for steam reforming of methane and model biogas at low temperature. Appl. Catal. B Environ. 2016, 181, 34–46. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. Catalysts 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Castro-Dominguez, B.; Mardilovich, I.P.; Ma, L.C.; Ma, R.; Dixon, A.G.; Kazantzis, N.K.; Ma, Y.H. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification. Membranes 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, F.; Paturzo, L.; Basile, A. A simulation study of the steam reforming of methane in a dense tubular membrane reactor. Int. J. Hydrogen Energy 2004, 29, 611–617. [Google Scholar] [CrossRef]
- Palma, V.; Ricca, A.; Martino, M.; Meloni, E. Innovative structured catalytic systems for methane steam reforming intensification. Chem. Eng. Process. 2017, 120, 207–215. [Google Scholar] [CrossRef]
- Marquez-Ruiz, A.; Wu, J.; Özkan, L.; Gallucci, F.; Van Sint Annaland, M. Optimal Operation and Control of Fluidized Bed Membrane Reactors for Steam Methane Reforming. Comput. Aided Chem. Eng. 2019, 46, 1231–1236. [Google Scholar] [CrossRef]
- Palma, V.; Barba, D.; Cortese, M.; Martino, M.; Renda, S.; Meloni, E. Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes. Catalysts 2020, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Arzamendi, G.; Diéguez, P.M.; Montes, M.; Odriozola, J.A.; Falabella Sousa-Aguiar, E.; Gandía, L.M. Methane steam reforming in a microchannel reactor for GTL intensification: A computational fluid dynamics simulation study. Chem. Eng. J. 2009, 154, 168–173. [Google Scholar] [CrossRef]
- Mbodji, M.; Commenge, J.M.; Falk, L.; Di Marco, D.; Rossignol, F.; Prost, L.; Valentin, S.; Joly, R.; Del-Gallo, P. Steam methane reforming reaction process intensification by using a millistructured reactor: Experimental setup and model validation for global kinetic reaction rate estimation. Chem. Eng. J. 2012, 207−208, 871–884. [Google Scholar] [CrossRef]
- Palma, V.; Martino, M.; Meloni, E.; Ricca, A. Novel structured catalysts configuration for intensification of steam reforming of methane. Int. J. Hydrogen Energy 2017, 42, 1629–1638. [Google Scholar] [CrossRef]
- Palma, V.; Ricca, A.; Meloni, E.; Miccio, M.; Martino, M.; Ciambelli, P. Methane Steam Reforming Intensification: Experimental and Numerical Investigations on Monolithic Catalysts. Chem. Eng. Trans. 2015, 43, 919–924. [Google Scholar] [CrossRef]
- Palma, V.; Ricca, A.; Martino, M.; Meloni, E. Innovative Catalytic Systems for Methane Steam Reforming Intensification. Chem. Eng. Trans. 2016, 52, 301–306. [Google Scholar] [CrossRef]
- Katheria, S.; Deo, G.; Kunzru, D. Rh-Ni/MgAl2O4 catalyst for steam reforming of methane: Effect of Rh doping, calcination temperature and its application on metal monoliths. Appl. Catal. A Gen. 2019, 570, 308–318. [Google Scholar] [CrossRef]
- López, E.; Divins, N.J.; Anzola, A.; Schbib, S.; Borio, D.; Llorca, J. Ethanol steam reforming for hydrogen generation over structured catalysts. Int. J. Hydrogen Energy 2013, 38, 4418–4428. [Google Scholar] [CrossRef]
- Zhou, T.; Li, L.; Cheng, J.; Hao, Z. Preparation of binary washcoat deposited on cordierite substrate for catalytic applications. Ceram. Int. 2010, 36, 529–534. [Google Scholar] [CrossRef]
- Papavasiliou, A.; Tsetsekou, A.; Matsouka, V.; Konsolakis, M.; Yentekakis, I.V. An investigation of the role of Zr and La dopants into Ce1−x−yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Appl. Catal. A Gen. 2010, 382, 73–84. [Google Scholar] [CrossRef]
- Parizotto, N.V.; Rocha, K.O.; Damyanova, S.; Passos, F.B.; Zanchet, D.; Marques, C.M.P.; Bueno, J.M.C. Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: Effect of Ag on the control of coke formation. Appl. Catal. A Gen. 2007, 330, 12–22. [Google Scholar] [CrossRef]
- Rakass, S.; Oudghiri-Hassani, H.; Rowntree, P.; Abatzoglou, N. Steam reforming of methane over unsupported nickel catalysts. J. Power Sources 2006, 158, 485–496. [Google Scholar] [CrossRef]
- Liu, C.J.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane. ChemCatChem 2011, 3, 529–541. [Google Scholar] [CrossRef]
- Boudjeloud, M.; Boulahouache, A.; Rabia, C.; Salhi, N. La-doped supported Ni catalysts for steam reforming of methane. Int. J. Hydrogen Energy 2019, 44, 9906–9913. [Google Scholar] [CrossRef]
- Arandiyan, H.; Peng, Y.; Liu, C.; Chang, H.; Li, J. Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH4 with CO2. J. Chem. Technol. Biotechnol. 2013, 89, 372. [Google Scholar] [CrossRef]
- Habibi, N.; Arandiyan, H.; Rezaei, M. Mesoporous MgOAl2O3 nanopowder-supported meso–macroporous nickel catalysts: A new path to high-performance biogas reforming for syngas. RSC Adv. 2016, 6, 29576. [Google Scholar] [CrossRef]
- Sepehri, S.; Rezaei, M.; Wang, Y.; Younesi, A.; Arandiyan, H. The evaluation of autothermal methane reforming for hydrogen production over Ni/CeO2 catalysts. Int. J. Hydrogen Energy 2018, 43, 22340. [Google Scholar] [CrossRef]
- Tribalis, A.; Panagiotou, G.D.; Bourikas, K.; Sygellou, L.; Kennou, S.; Ladas, S.; Lycourghiotis, A.; Kordulis, C. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming. Catalysts 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- El Doukkali, M.; Iriondo, A.; Arias, P.L.; Cambra, J.F.; Gandarias, I.; Barrio, V.L. Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. Int. J. Hydrogen Energy 2012, 37, 8298–8309. [Google Scholar] [CrossRef]
- Yang, X.; Da, J.; Yu, H.; Wang, H. Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process. Fuel 2016, 179, 353–361. [Google Scholar] [CrossRef]
- Dan, M.; Mihet, M.; Biris, A.R.; Marginean, P.; Almasan, V.; Borodi, G.; Watanabe, F.; Biris, A.S.; Lazar, M.D. Supported nickel catalysts for low temperature methane steam reforming: Comparison between metal additives and support modification. React. Kinet. Mech. Catal. 2012, 105, 173–193. [Google Scholar] [CrossRef]
- Mortola, V.B.; Damyanova, S.; Zanchet, D.; Bueno, J.M.C. Surface and structural features of Pt/CeO2-La2O3-Al2O3 catalysts for partial oxidation and steam reforming of methane. Appl. Catal. B Environ. 2011, 107, 221–236. [Google Scholar] [CrossRef]
- Villegas, L.; Masset, F.; Guilhaume, N. Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity. Appl. Catal. A Gen. 2007, 320, 43–55. [Google Scholar] [CrossRef]
- Haberman, B.A.; Young, J.B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 2004, 47, 3617–3629. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Tsetsekou, A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats. J. Eur. Ceram. Soc. 2000, 20, 815–824. [Google Scholar] [CrossRef]
- Valentini, M.; Groppi, G.; Cristiani, C.; Levi, M.; Tronconi, M.; Forzatti, P. The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts. Catal. Today 2001, 69, 307–314. [Google Scholar] [CrossRef]
- Yasaki, S.; Yoshino, Y.; Kazunori Ihara, D.; Ohkubo, K. Method of Manufacturing an Exhaust Gas Purifying Catalyst. U.S. Patent 5208206A, 4 May 1993. [Google Scholar]
- Wua, D.; Zhang, Y.; Li, Y. Mechanical stability of monolithic catalysts: Improving washcoat adhesion by FeCrAl alloy substrate treatment. J. Ind. Eng. Chem. 2017, 56, 175–184. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Phokha, S.; Pinitsoontorn, S.; Chirawatkul, P.; Poo-arporn, Y.; Maensiri, S. Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res. Lett. 2012, 7, 425. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.; Davies, T.E.; Morgan, D.J.; Golunski, S.; Taylor, S.H. Influence of the Preparation Method of Ag-K/CeO2-ZrO2-Al2O3 Catalysts on Their Structure and Activity for the Simultaneous Removal of Soot and NOx. Catalysts 2020, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, F.; Liu, X.; Liu, Y.; Luo, M.; Teng, B.; Fan, M.; Liu, X. Resolving a Decade-Long Question of Oxygen Defects in Raman Spectra of Ceria-Based Catalysts at Atomic Level. J. Phys. Chem. C 2019, 123, 18889–18894. [Google Scholar] [CrossRef]
- Chan, S.S.; Wachs, I.E. In situ laser Raman spectroscopy of nickel oxide supported on γ-Al2O3. J. Catal. 1987, 103, 224–227. [Google Scholar] [CrossRef]
- Murugan, R.; Vijayaprasath, G.; Mahalingam, T.; Ravi, G. Enhancement of room temperature ferromagnetic behavior of rf sputtered Ni-CeO2 thin films. Appl. Surf. Sci. 2016, 390, 583–590. [Google Scholar] [CrossRef]
- De Freitas Silva, T.; Costa Dias, J.A.; Guimarães Maciel, C.; Mansur Assaf, J. Ni/Al2O3 catalysts: Effects of the promoters Ce, La and Zr on the methane steam and oxidative reforming reactions. Catal. Sci. Technol. 2013, 3, 635–643. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Liu, Y.; Chen, Y.; Yang, S. Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction. J. Rare Earths 2013, 31, 559–564. [Google Scholar] [CrossRef]
- Ginsburg, J.M.; Pina, J.; El Solh, T.; de Lasa, H.I. Coke Formation over a Nickel Catalyst under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models. Ind. Eng. Chem. Res. 2005, 44, 4846–4854. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Martínez-Arias, A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Appl. Catal. A 2016, 518, 2–17. [Google Scholar] [CrossRef]
- Zeppieri, M.; Villa, P.L.; Verdone, N.; Scarsella, M.; De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A Gen. 2010, 387, 147–154. [Google Scholar] [CrossRef]
Chemical | SSA (B.E.T.) (m2/g) | Crystallite Size (nm) | Particle Size D50 (μm) | Impurities (%) | |
---|---|---|---|---|---|
CeO2 (111) | Al2O3 (120) | ||||
Actalys HAS | 246 | 6.1 | - | 0.041−20 | La2O3 (≤0.1); Pr6O11 (≤0.1); Nd2O3 (≤0.1) |
Pural SB | 250 | - | 5.0 | 45 | Na2O (0.002) |
Sample | Al2O3/CeO2 (Nominal Ratio) | Composition (wt %) | SSA (B.E.T.) (m2/g) | |
---|---|---|---|---|
CeO2 | Al2O3 | |||
4AlCe | 0.042 | 96.2 | 4.0 | 65 |
8AlCe | 0.087 | 92.1 | 7.9 | 68 |
20AlCe | 0.250 | 80.9 | 18.7 | 75 |
40AlCe | 0.667 | 61.8 | 37.2 | 92 |
γ-Al2O3 | ∞ | - | 100 | 140 |
Sample | Ni loading (wt %) | SSA (B.E.T.) (m2/g) | Crystallite Size–CeO2 (111) (nm) |
---|---|---|---|
Ni4AlCe | 4.7 | 60 | 6.1 |
Ni8AlCe | 4.9 | 61 | 6.3 |
Ni20AlCe | 4.7 | 69 | 6.2 |
Ni40AlCe | 4.7 | 86 | 6.4 |
NiAl2O3 | 4.9 | 125 | - |
Sample | Loading (wt %) | SSA (B.E.T.) (m2/g) | Average Pore Diameter (μm) | Carbon Formation Rate (mgcoke/gcat-gC,fed-h) | |
---|---|---|---|---|---|
Ni | Coating (4AlCe) | ||||
Bare SiC | - | - | 0.35 | 17 | - |
4AlCe-SiC | - | - | 12 | 14 | - |
Ni4AlCe-SiC | 0.77 | 15.12 | 11 | 9 | - |
Ni4AlCe-SiC_spent | 0.75 | 14.90 | 7 | 7.5 | 0.35 |
a | XMSR → 0 and XWGS → 0 | H2/CO → 3 H2/CO2 → 4 |
b | XMSR → 0 and XWGS → 100 | H2/CO → ∞ H2/CO2 → 4 |
c | XMSR → 100 and XWGS → 100 | H2/CO → ∞ H2/CO2 → 4 |
d | XMSR → 100 and XWGS → 0 | H2/CO → 3 H2/CO2 → ∞ |
k0 | Ea (kJ/mol) | |
---|---|---|
Steam reforming | 856 mol/g·min·atm2 | 71 |
Water gas shift | 11,190 mol/g·min | 33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, V.; Meloni, E.; Renda, S.; Martino, M. Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation. C 2020, 6, 52. https://doi.org/10.3390/c6030052
Palma V, Meloni E, Renda S, Martino M. Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation. C. 2020; 6(3):52. https://doi.org/10.3390/c6030052
Chicago/Turabian StylePalma, Vincenzo, Eugenio Meloni, Simona Renda, and Marco Martino. 2020. "Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation" C 6, no. 3: 52. https://doi.org/10.3390/c6030052
APA StylePalma, V., Meloni, E., Renda, S., & Martino, M. (2020). Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation. C, 6(3), 52. https://doi.org/10.3390/c6030052