Comments on the XPS Analysis of Carbon Materials
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. The C (1s) Spectrum of Diamond, HOPG and Graphitic Carbons
3.2. The C (KVV) Auger Peak and the D-Parameter
3.3. Complementary Use of the C (1s) and O (1s) Spectra
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cazorla-Amorós, D. Grand challenges in carbon-based materials research. Front. Mater. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, N.P.; Hatton, R.A.; Silva, S.R.P. Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange. Chem. Phys. Lett. 2007, 434, 92–95. [Google Scholar] [CrossRef]
- Butenko, Y.V.; Krishnamurthy, S.; Chakraborty, A.K.; Kuznetsov, V.L.; Dhanak, V.R.; Hunt, M.R.C.; Šiller, L. Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys. Rev. BCondens. Matter Mater. Phys. 2005, 71. [Google Scholar] [CrossRef] [Green Version]
- Raffa, V.; Ciofani, G.; Nitodas, S.; Karachalios, T.; D’Alessandro, D.; Masini, M.; Cuschieri, A. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008, 46, 1600–1610. [Google Scholar] [CrossRef]
- Jeong, H.K.; Yun, P.L.; Lahaye, R.J.W.E.; Park, M.H.; Kay, H.A.; Ick, J.K.; Yang, C.W.; Chong, Y.P.; Ruoff, R.S.; Young, H.L. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366. [Google Scholar] [CrossRef]
- An, K.H.; Yang, C.M.; Seo, K.; Park, K.A.; Lee, Y.H. A diameter-dependent separation of semiconducting from metallic single-wall carbon nanotubes by using nitronium ions. Curr. Appl. Phys. 2006, 6. [Google Scholar] [CrossRef]
- Cheung, T.T.P. X-ray photoemission of carbon: Lineshape analysis and application to studies of coals. J. Appl. Phys. 1982, 53, 6857–6862. [Google Scholar] [CrossRef]
- Ouyang, Y.; Peng, J.C.; Wang, H.; Peng, Z.H. The rehybridization of electronic orbitals in carbon nanotubes. Chinese Phys. B 2008, 17, 3123–3129. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Full- Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. J. Vac. Sci. Technol. A 2021, 39, 013204. [Google Scholar] [CrossRef]
- Kaciulis, S. Spectroscopy of carbon: From diamond to nitride films. Surf. Interface Anal. 2012, 44, 1155–1161. [Google Scholar] [CrossRef]
- Kaciulis, S.; Mezzi, A.; Calvani, P.; Trucchi, D.M. Electron spectroscopy of the main allotropes of carbon. Surf. Interface Anal. 2014, 46, 966–969. [Google Scholar] [CrossRef]
- Blume, R.; Rosenthal, D.; Tessonnier, J.P.; Li, H.; Knop-Gericke, A.; Schlögl, R. Characterizing Graphitic Carbon with X-ray Photoelectron Spectroscopy: A Step-by-Step Approach. Chem Cat Chem 2015, 7, 2871–2881. [Google Scholar] [CrossRef] [Green Version]
- Major, G.H.; Avval, T.G.; Moeini, B.; Pinto, G.; Shah, D.; Jain, V.; Carver, V.; Skinner, W.; Gengenbach, T.R.; Easton, C.D.; et al. Assessment of the frequency and nature of erroneous x-ray photoelectron spectroscopy analyses in the scientific literature. J. Vac. Sci. Technol. A 2020, 38, 061204. [Google Scholar] [CrossRef]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Wu, J.B.; Lin, M.L.; Cong, X.; Liu, H.N.; Tan, P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Lascovich, J.C.; Scaglione, S. Comparison among XAES, PELS and XPS techniques for evaluation of Sp2 percentage in a-C:H. Appl. Surf. Sci. 1994, 78, 17–23. [Google Scholar] [CrossRef]
- Lascovich, J.C.; Giorgi, R.; Scaglione, S. Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 1991, 47, 17–21. [Google Scholar] [CrossRef]
- Lascovich, J.C.; Santoni, A. Study of the occupied electronic density of states of carbon samples by using second derivative carbon KVV Auger spectra. Appl. Surf. Sci. 1996, 103, 245–253. [Google Scholar] [CrossRef]
- Lascovich, J.C.; Rosato, V. Analysis of the electronic structure of hydrogenated amorphous carbon via Auger spectroscopy. Appl. Surf. Sci. 1999, 152, 10–18. [Google Scholar] [CrossRef]
- Barlow, A.J.; Scott, O.; Sano, N.; Cumpson, P.J. Multivariate auger feature imaging (MAFI): A new approach towards chemical state identification of novel carbons in XPS imaging. Surf. Interface Anal. 2015, 47, 173–175. [Google Scholar] [CrossRef]
- Barlow, A.J.; Popescu, S.; Artyushkova, K.; Scott, O.; Sano, N.; Hedley, J.; Cumpson, P.J. Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI). Carbon 2016, 107, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994, 21, 165–176. [Google Scholar] [CrossRef]
- Morgan, D.J. Cluster cleaned HOPG by XPS. Surf. Sci. Spectra 2017, 24, 024003. [Google Scholar] [CrossRef]
- Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2 /sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231. [Google Scholar] [CrossRef]
- Xpssimplified. Available online: https://xpssimplified.com/elements/carbon.php (accessed on 21 June 2021).
- Beamson, G.; Briggs, D. (Eds.) High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley & Sons: Chichester, UK, 1992; p. 267. [Google Scholar]
- Theodosiou, A.; Spencer, B.F.; Counsell, J.; Jones, A.N. An XPS/UPS study of the surface/near-surface bonding in nuclear grade graphites: A comparison of monatomic and cluster depth-profiling techniques. Appl. Surf. Sci. 2020, 508. [Google Scholar] [CrossRef]
- Malitesta, C.; Losito, I.; Sabbatini, L.; Zambonin, P.G. Applicability of chemical derivatization—X-ray photoelectron spectroscopy (CD-XPS) to the characterization of complex matrices: Case of electrosynthesized polypyrroles. J. Electron Spectros. Relat. Phenom. 1998, 97, 199–208. [Google Scholar] [CrossRef]
- Pippig, F.; Sarghini, S.; Holländer, A.; Paulussen, S.; Terrvn, H. TFAA chemical derivatization and XPS. Analysis of OH and NHx polymers. Surf. Interface Anal. 2009, 41, 421–429. [Google Scholar] [CrossRef]
- Burgess, R.; Buono, C.; Davies, P.R.; Davies, R.J.; Legge, T.; Lai, A.; Lewis, R.; Morgan, D.J.; Robinson, N.; Willock, D.J. The functionalisation of graphite surfaces with nitric acid: Identification of functional groups and their effects on gold deposition. J. Catal. 2015, 323, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Fortner, J.D.; Kim, D.I.; Boyd, A.M.; Falkner, J.C.; Moran, S.; Colvin, V.L.; Hughes, J.B.; Kim, J.H. Reaction of water-stable C60 aggregates with ozone. Environ. Sci. Technol. 2007, 41, 7497–7502. [Google Scholar] [CrossRef] [PubMed]
- Weippert, J.; Ulas, S.; Waldt, E.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Böttcher, A. C 68: A non-IPR fullerene capable of binding extraordinary amounts of Cs atoms. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 206–214. [Google Scholar] [CrossRef]
Software | Method | Parameters Used | D-Parameter/eV |
---|---|---|---|
Thermo Scientific Avantage v5.9925 | D-parameter in-built routine | Gaussian, Smooth width 2, Differentiation width 1 | 24.0 |
Savitsky–Golay, Smooth width 2, Differentiation width 1 | 24.0 | ||
Moving Average, Smooth width 2, Differentiation width 1 | 24.0 | ||
Wiener, Smooth width 2, Differentiation width 1 | 22.5 | ||
Gaussian, Smooth width 2, Differentiation width 1, Quartic Fit | 23.5 | ||
Savitsky–Golay, Smooth width 2, Differentiation width 1, Quartic Fit | 23.5 | ||
Moving Average, Smooth width 2, Differentiation width 1, Quartic Fit | 23.5 | ||
Wiener, Smooth width 2, Differentiation width 1, Quartic Fit | 23.0 | ||
CasaXPS v2.3.24 | Polynomial regression followed by “SP” background type | “PR” background with value of 35, Differentiation of synthetic envelope | 24.5 |
“PR” background with value of 32, Differentiation of synthetic envelope | 24.0 | ||
Differentiation followed by “SP” background type | Savitsky–Golay Quadratic smoothing width 5 | 24.5 | |
Savitsky–Golay Quadratic smoothing width 7 | 24.0 | ||
Savitsky–Golay Quadratic smoothing width 9 | 23.5 | ||
Savitsky–Golay Quadratic smoothing width 15 | 23.5 |
Speciation | Binding Energy Range Relative to 284.5 eV |
---|---|
C-C/C-H | 284.8–285.5 |
C-O-C/C-OH | 286.0–287.0 |
R-C = O/O-C-O | 287.5–288.5 |
O-C = O/CO3 | 288.5–289.0 |
R-(CO)-O-(CO)-R | 289.0–290.0 |
R-O-(CO)-O-R | 290.0–295.5 |
CF/Cl | 286.5–287.5 |
CF2 | 290.0–291.0 |
CF3 | 291.0–292.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, D.J. Comments on the XPS Analysis of Carbon Materials. C 2021, 7, 51. https://doi.org/10.3390/c7030051
Morgan DJ. Comments on the XPS Analysis of Carbon Materials. C. 2021; 7(3):51. https://doi.org/10.3390/c7030051
Chicago/Turabian StyleMorgan, David J. 2021. "Comments on the XPS Analysis of Carbon Materials" C 7, no. 3: 51. https://doi.org/10.3390/c7030051
APA StyleMorgan, D. J. (2021). Comments on the XPS Analysis of Carbon Materials. C, 7(3), 51. https://doi.org/10.3390/c7030051