Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling
Abstract
:1. Introduction
2. Experimental and Computational Methods
2.1. Materials
2.2. Transmission Electron Microscopy
2.3. Computational
3. Results and Discussion
3.1. TEM Data
3.2. Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.K.; Iyer, P.K.; Giri, P.K. Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Dia. Relat. Mater. 2010, 19, 1281–1288. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Monthioux, M.; Serp, P.; Caussat, B.; Flahaut, E.; Razafinimanana, M.; Valensi, F.; Laurent, C.; Peigney, A.; Mesguich, D.; Weibel, A.; et al. Carbon nanotubes. In Handbook of Nanotechnology, 4th ed.; Bhushan, B., Ed.; Springer: Heidelberg, Germany, 2017; pp. 193–247. [Google Scholar]
- Monthioux, M. Filling single-wall carbon nanotubes. Carbon 2002, 40, 1809–1823. [Google Scholar] [CrossRef]
- Monthioux, M.; Flahaut, E.; Cleuziou, J.-P. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21, 2774–2793. [Google Scholar] [CrossRef]
- Bousige, C.; Stolz, A.; Silva-Santos, S.D.; Shi, J.; Cui, W.; Nie, C.; Marques, M.A.L.; Flahaut, E.; Monthioux, M.; San-Miguel, A. Superior carbon nanotube stability by molecular filling: A single-chirality study at extreme pressures. Carbon 2021, 183, 884–892. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, W.I.; Kim, G.; Song, Y.J.; Jeong, G.-H.; Hatakeyama, R.; Ihm, J.; Kuk, Y. Cesium-filled single wall carbon nanotubes as conducting nanowires: Scanning tunneling spectroscopy study. Phys. Rev. Lett. 2007, 99, 256407. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shi, Z.; Gu, Z. Synthesis of single-walled carbon nanotube/metal nanoparticle hybrid materials from potassium-filled nanotubes. Carbon 2010, 48, 443–446. [Google Scholar] [CrossRef]
- Rao, A.M.; Eklund, P.C.; Bandow, S.; Thess, A.; Smalley, R.E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257–259. [Google Scholar] [CrossRef]
- Zubaïr, A.; Tristant, D.; Nie, C.; Tsentalovitch, D.E.; Headrick, R.J.; Pasquali, M.; Kono, J.; Meunier, V.; Flahaut, E.; Monthioux, M.; et al. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. Phys. Rev. Mater. 2017, 1, 064002. [Google Scholar] [CrossRef]
- Rossella, F.; Soldano, C.; Onorato, P.; Bellani, V. Tuning electronic transport in cobalt-filled carbon nanotubes using magnetic fields. Nanoscale 2014, 6, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M.H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R.J.; Pichler, T.; Silva, S.R.P. Iron filled single-wall carbon nanotubes—A novel ferromagnetic medium. Chem. Phys. Lett. 2006, 421, 129–133. [Google Scholar] [CrossRef]
- Monthioux, M. (Ed.) Carbon Meta-Nanotubes: Synthesis, Properties, and Applications; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Chopra, N.G.; Benedict, L.X.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138. [Google Scholar] [CrossRef]
- Li, Z.G.; Fagan, P.J.; Liang, L. The three-dimensional shape of carbon nanotubes by high-resolution electron microscopy. Chem. Phys. Lett. 1993, 207, 148–152. [Google Scholar] [CrossRef]
- Liu, M.; Cowley, J.M. Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy 1994, 53, 333–342. [Google Scholar] [CrossRef]
- Liu, M.; Cowley, J.M. Structures of the helical carbon nanotubes. Carbon 1994, 32, 393–403. [Google Scholar] [CrossRef]
- Amelinckx, S.; Bernaerts, D.; Zhang, X.B.; Van Tendeloo, G.; Van Landuyt, J. A structure model and growth mechanism for multishell carbon nanotubes. Science 1995, 267, 1334–1338. [Google Scholar] [CrossRef]
- Nie, C.; Galibert, A.-M.; Soula, B.; Flahaut, E.; Sloan, J.; Monthioux, M. A new insight on the mechanisms of filling closed carbon nanotubes with molten metal iodides. Carbon 2016, 110, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Nie, C.; Galibert, A.-M.; Soula, B.; Sloan, J.; Flahaut, E.; Monthioux, M. The unexpected complexity of filling double-wall carbon nanotubes with nickel (and iodine) 1D nanocrystals. IEEE Trans. Nanotechnol. 2017, 16, 759–766. [Google Scholar] [CrossRef]
- Rayson, M.J.; Briddon, P.R. Rapide iterative method for electronic-structure eigenproblems using localised basis functions. Comput. Phys. Commun. 2008, 178, 128–134. [Google Scholar] [CrossRef]
- Rayson, M.J.; Briddon, P.R. Highly efficient method for Kohn-Sham density functional calculations of 500– atom systems. Phys. Rev. B 2009, 80, 1–11. [Google Scholar] [CrossRef]
- Rayson, M.J. Rapid filtration algorithm to construct a minimal basis on the fly from a primitive Gaussian basis. Comput. Phys. Commun. 2010, 181, 1051–1056. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Komsa, H.-P.; Senga, R.; Suenaga, K.; Krasheninnikov, A.V. Structural Distortions and charge density waves in iodine chains encapsulated inside carbon nanotubes. Nano Lett. 2017, 17, 3694–3700. [Google Scholar] [CrossRef] [Green Version]
- Chorro, M.; Kané, G.; Alvarez, L.; Cambedouzou, J.; Paineau, E.; Rossberg, A.; Kociak, M.; Aznar, R.; Pascarelli, S.; Launois, P.; et al. 1D-confinement of polyiodides inside single-wall carbon nanotubes. Carbon 2013, 52, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Rybkovskiy, D.V.; Impellizzeri, A.; Obraztsova, E.D.; Ewels, C.P. Polyiodide structures in thin single-walled carbon nanotubes: A large-scale density-functional study. Carbon 2019, 142, 123–130. [Google Scholar] [CrossRef]
- Hung, C.-C.; Kucera, D. Graphite intercalation compound with iodine as the major intercalate. Carbon 1994, 32, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Mordkovich, V.Z. Three types of behavior of multiwall carbon nanotubes in reactions with intercalating agents. Mol. Cryst. Liq. Cryst. 2000, 340, 775–780. [Google Scholar] [CrossRef]
- Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 2002, 40, 1751–1764. [Google Scholar] [CrossRef]
- Mordkovich, V.Z.; Baxendale, M.; Yoshimura, S.; Chang, R.P.H. Intercalation into carbon nanotubes. Carbon 1996, 34, 1301–1303. [Google Scholar] [CrossRef]
- Huang, X.; Liang, W.; Zhang, S. Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions. Nanosc. Res. Lett. 2011, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellett, E.A.; Richards, B.P. The c-axis thermal expansion of carbons and graphites. J. Appl. Cryst. 1971, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kellett, E.A.; Richards, B.P. The thermal expansion of graphite within the layer plane. J. Nucl. Mater. 1964, 12, 184–192. [Google Scholar] [CrossRef]
- Després, J.-F.; Monthioux, M. Mechanical properties of C/SiC composites as explained from their interfacial features. J. Europ. Ceram. Soc. 1995, 15, 209–224. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Kharisov, B.I. Variations of interlayer spacing in carbon nanotubes. RSC Adv. 2014, 4, 30807–30815. [Google Scholar] [CrossRef]
- Vercosa, D.G.; Barros, E.B.; Souza Filho, A.G.; Mendes Filho, J.; Samsonidze, G.G.; Saito, R.; Dresselhaus, M.S. Torsional instability of chiral carbon nanotubes. Phys. Rev. B 2010, 81, 165430. [Google Scholar] [CrossRef]
- Leven, I.; Guerra, R.; Vanossi, A.; Tosatti, E.; Hod, O. Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 2016, 11, 1082–1086. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, J.; Vajtai, R.; Ajayan, P.M.; Barrera, E.V. Iodine-doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 2011, 1, 83. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-K.; Lee, S.-C.; Ahn, J.-P.; Kim, S.-C.; Wilson, J.I.B.; John, P. The Growth of AA Graphite on (111) Diamond. J. Chem. Phys. 2008, 129, 234709. [Google Scholar] [CrossRef]
- Lee, J.-K.; Lee, S.; Kim, Y.-I.; Kim, J.-G.; Lee, K.-I.; Ahn, J.-P.; Min, B.-K.; Yu, C.-J.; Hwa Chae, K.; John, P. Structure of Multi-Wall Carbon Nanotubes: AA′ Stacked Graphene Helices. Appl. Phys. Lett. 2013, 102, 161911. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-K.; Kim, J.-G.; Hembram, K.P.S.S.; Kim, Y.-I.; Min, B.-K.; Park, Y.; Lee, J.-K.; Moon, D.J.; Lee, W.; Lee, S.-G.; et al. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Sci. Rep. 2016, 6, 39624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaya, A.; Ewels, C.P.; Suarez-Martinez, I.; Wagner, P.; Lefrant, S.; Okotrub, A.; Bulusheva, L.; Briddon, P.R. Bromination of Graphene and Graphite. Phys. Rev. B 2011, 83, 045411. [Google Scholar] [CrossRef]
- Hof, F.; Impellizzeri, A.; Picheau, E.; Che, X.; Pénicaud, A.; Ewels, C.P. Chainlike Structure Formed in Iodine Monochloride Graphite Intercalation Compounds. J. Phys. Chem. C 2021, 125, 23383–23389. [Google Scholar] [CrossRef]
Tube Combination (dunrelaxed) | Helicity Index | dmin (nm) | dmax (nm) | Δd (nm) |
---|---|---|---|---|
(n, 0)@(n + 8, 0) (0.313 nm) | (13, 0)@(21, 0) | 0.319 | 0.319 | 0.000 |
(25, 0)@(33, 0) | 0.326 | 0.326 | 0.000 | |
(37, 0)@(45, 0) | 0.332 | 0.332 | 0.000 | |
(49, 0)@(57, 0) | 0.323 | 0.335 | 0.013 | |
(61, 0)@(69, 0) | 0.325 | 0.336 | 0.011 | |
(n, 0)@(n + 9, 0) (0.344 nm) | (13, 0)@(22, 0) | 0.349 | 0.355 | 0.006 |
(25, 0)@(34, 0) | 0.345 | 0.347 | 0.002 | |
(37, 0)@(46, 0) | 0.343 | 0.346 | 0.003 | |
(49, 0)@(58, 0) | 0.336 | 0.346 | 0.010 | |
(61, 0)@(70, 0) | 0.336 | 0.347 | 0.011 | |
(n, 0)@(n + 10, 0) (0.376 nm) | (13, 0)@(23, 0) | 0.343 | 0.568 | 0.225 |
(25, 0)@(35, 0) | 0.342 | 0.618 | 0.276 | |
(37, 0)@(47, 0) | 0.347 | 0.612 | 0.265 | |
(49, 0)@(59, 0) | 0.346 | 0.628 | 0.282 | |
(61, 0)@(71, 0) | 0.345 | 0.625 | 0.280 |
DWCNT Type | Inside | Intercalated | Charge Transfer Difference |
---|---|---|---|
(13, 0)@(23, 0) | −0.25 | −0.19 | +0.06 |
(19, 0)@(29, 0) | −0.20 | −0.26 | −0.06 |
(25, 0)@(35, 0) | −0.19 | −0.27 | −0.09 |
(31, 0)@(41, 0) | −0.18 | −0.27 | −0.09 |
(37, 0)@(47, 0) | −0.18 | −0.27 | −0.09 |
(43, 0)@(53, 0) | −0.18 | −0.28 | −0.10 |
(49, 0)@(59, 0) | −0.17 | −0.28 | −0.11 |
(61, 0)@(0,71) | −0.17 | −0.28 | −0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Dias, A.C.; Impellizzeri, A.; Picheau, E.; Noé, L.; Pénicaud, A.; Ewels, C.; Monthioux, M. Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling. C 2022, 8, 10. https://doi.org/10.3390/c8010010
Torres-Dias AC, Impellizzeri A, Picheau E, Noé L, Pénicaud A, Ewels C, Monthioux M. Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling. C. 2022; 8(1):10. https://doi.org/10.3390/c8010010
Chicago/Turabian StyleTorres-Dias, Abraao Cefas, Anthony Impellizzeri, Emmanuel Picheau, Laure Noé, Alain Pénicaud, Christopher Ewels, and Marc Monthioux. 2022. "Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling" C 8, no. 1: 10. https://doi.org/10.3390/c8010010
APA StyleTorres-Dias, A. C., Impellizzeri, A., Picheau, E., Noé, L., Pénicaud, A., Ewels, C., & Monthioux, M. (2022). Asymmetrical Cross-Sectional Buckling in Arc-Prepared Multiwall Carbon Nanotubes Revealed by Iodine Filling. C, 8(1), 10. https://doi.org/10.3390/c8010010