Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications
Abstract
:1. Introduction
2. Capacitive Sensing: Principals and Applications
3. Design, Materials, and Fabrication of CPSs
4. Opportunities and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.L.; Huang, Y.; Shih, F.; Chou, T.; Chien, T.L.; Chen, R.; Fang, W. A dual sensing modes capacitive tactile sensor for proximity and tri-axial forces detection. In Proceedings of the IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 710–713. [Google Scholar]
- Mondal, I.; Ganesha, M.K.; Singh, A.K.; Kulkarni, G.U. Inkjet printing aided patterning of transparent metal mesh for wearable tactile and proximity sensors. Mater. Lett. 2022, 15, 131724. [Google Scholar] [CrossRef]
- Lee, H.; Mandivarapu, J.K.; Ogbazghi, N.; Li, Y. Real-time interface control with motion gesture recognition based on non-contact capacitive sensing. arXiv 2022, arXiv:2201.01755. [Google Scholar]
- Ge, C.; Yang, B.; Wu, L.; Duan, Z.; Li, Y.; Ren, X.; Jiang, L.; Zhang, J. Capacitive sensor combining proximity and pressure sensing for accurate grasping of a prosthetic hand. ACS Appl. Electron. Mater. 2022, 4, 869–877. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Yu, B.; Huang, D.; Wang, Q.; Li, Z. Low-cost, flexible annular interdigital capacitive sensor (Faics) with carbon black-pdms sensitive layer for proximity and pressure sensing. In Proceedings of the IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 35–38. [Google Scholar]
- Fleming, A.J. A review of nanometer resolution position sensors: Operation and performance. Sens. Actuators A Phys. 2013, 190, 106–126. [Google Scholar] [CrossRef]
- George, B.; Tan, Z.; Nihtianov, S. Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces. IEEE Trans. Ind. Electron. 2017, 64, 9595–9607. [Google Scholar] [CrossRef]
- Grosse-Puppendahl, T.; Holz, C.; Cohn, G.; Wimmer, R.; Bechtold, O.; Hodges, S.; Smith, J.R. Finding common ground: A survey of capacitive sensing in human-computer interaction. In Proceedings of the CHI Conference on Human Factors in Computing Systems (ACM CHI), Gaithersburg, ML, USA, 6–11 May 2017; pp. 3293–3315. [Google Scholar]
- Sivayogan, T. Design and Development of a Contactless Planar Capacitive Sensor. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- Kulkarni, M.R.; John, R.A.; Rajput, M.; Tiwari, N.; Yantara, N.; Nguyen, A.C.; Mathews, N. Transparent fexible multifunctional nanostructured architectures for non-optical readout, proximity, and pressure sensing. ACS Appl. Mater. Interfaces 2017, 9, 15015–15021. [Google Scholar] [CrossRef]
- Tholin-Chittenden, C.; Abascal, J.F.P.-J.; Soleimani, M. Automatic parameter selection of image reconstruction algorithms for planar array capacitive imaging. IEEE Sens. J. 2018, 18, 6263–6272. [Google Scholar] [CrossRef] [Green Version]
- Moheimani, R.; Agarwal, M.; Dalir, H. 3D-printed flexible structures with embedded deformation/displacement sensing for the creative industries. In AIAA Scitech 2021 Forum; Aerospace Research Central: New York, NY, USA, 2021; p. 0534. [Google Scholar]
- Zeinali, S.; Homayoonnia, S.; Homayoonnia, G. Comparative investigation of interdigitated and parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors. Sens. Actuators B Chem. 2019, 278, 153–164. [Google Scholar] [CrossRef]
- Chen, W.P.; Zhao, Z.G.; Liu, X.W.; Zhang, Z.X.; Suo, C.G. A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 2009, 9, 7431–7444. [Google Scholar] [CrossRef]
- Guan, F.; Xie, Y.; Wu, H.; Meng, Y.; Shi, Y.; Gao, M.; Zhang, Z.; Chen, S.; Chen, Y.; Wang, H.; et al. Silver nanowire–bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity. ACS Nano 2020, 14, 15428–15439. [Google Scholar] [CrossRef]
- Sadasivuni, K.K.; Kafy, A.; Zhai, L.; Ko, H.U.; Mun, S.; Kim, J. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 2015, 11, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Watzenig, D.; Fox, C. A review of statistical modelling and inference for electrical capacitance tomography. Meas. Sci. Technol. 2009, 20, 052002. [Google Scholar] [CrossRef]
- Kim, H.; Kim, G.; Kim, T.; Lee, S.; Kang, D.; Hwang, M.S.; Chae, Y.; Kang, S.; Lee, H.; Park, H.G.; et al. Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 2018, 14, 1703432. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yu, G.; Dai, X.; Wang, X.; Yao, B.; Kong, J. Highly stretchable, self-healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion monitoring. ACS Appl. Mater. Interfaces 2020, 12, 51987–51998. [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Han, S.S.; Park, S.-S. RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Mater. Sci. 2020, 3, 233–240. [Google Scholar] [CrossRef]
- Min, S.D.; Wang, C.; Park, D.S.; Park, J.H. Development of a textile capacitive proximity sensor and gait monitoring system for smart healthcare. J. Med. Syst. 2018, 42, 76. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Dobashi, Y.; Preston, C.; Wyss, J.K.M.; Mirabbasi, S.; Madden, J.D.W. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Sci. Adv. 2017, 3, e1602200. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J.H.; Ahn, J.H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017, 11, 7950–7957. [Google Scholar] [CrossRef]
- Arshad, A.; Khan, S.; Alam, A.H.M.Z.; Kadir, K.A.; Tasnim, R.; Ismail, A.F. A capacitive proximity sensing scheme for human motion detection. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [Google Scholar]
- Hosseini, M.; Zhu, G.; Peter, Y.-A. A new formulation of fringing capacitance and its application to the control of parallel-plate electrostatic micro actuators. Analog Integr. Circuits Signal Process. 2007, 53, 119–128. [Google Scholar] [CrossRef]
- Wang, B.; Long, J.; Teo, K. Multi-channel capacitive sensor arrays. Sensors 2016, 16, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlbacher-Karrer, S.; Mosa, A.H.; Faller, L.-M.; Ali, M.; Hamid, R.; Zangl, H.; Kyamakya, K. A driver state detection system—Combining a capacitive hand detection sensor with physiological sensors. IEEE Trans. Instrum. Meas. 2017, 66, 624–636. [Google Scholar] [CrossRef]
- Durukan, M.B.; Cicek, M.O.; Doganay, D.; Gorur, M.C.; Çınar, S.; Unalan, H.E. Multifunctional and Physically Transient Supercapacitors, Triboelectric Nanogenerators, and Capacitive Sensors. Adv. Funct. Mater. 2022, 32, 2106066. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Oxford University Press: Oxford, UK, 1881. [Google Scholar]
- Ye, Y.; Zhang, C.; He, C.; Wang, X.; Huang, J.; Deng, J. A review on applications of capacitive displacement sensing for capacitive proximity sensor. IEEE Access 2019, 8, 45325–45342. [Google Scholar] [CrossRef]
- Baxter, L.K. Capacitive Sensors: Design and Applications; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 1997. [Google Scholar]
- Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef]
- Abdelhamid, H.; Morsy, O.E.; El-Shibiny, A.; Abdelbaset, R. Detection of foodborne pathogens using novel vertical capacitive sensors. Alex. Eng. J. 2022, 61, 3873–3882. [Google Scholar] [CrossRef]
- Ahmadi, A.; Nabipour, M.; Taheri, S.; Mohammadi-Ivatloo, B.; Vahidinasab, V. A New False Data Injection Attack Detection Model for Cyberattack Resilient Energy Forecasting. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Taheri, S.; Akbari, A.; Ghahremani, B.; Razban, A. Reliability-based energy scheduling of active buildings subject to renewable energy and demand uncertainty. Therm. Sci. Eng. Prog. 2022, 28, 101149. [Google Scholar] [CrossRef]
- Pourteimoor, S.; Haratizadeh, H. Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature. J. Mater. Sci. Mater. Electron. 2017, 28, 18529–18534. [Google Scholar] [CrossRef]
- Merdassi, A.; Yang, P.; Chodavarapu, V. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process. Sensors 2015, 15, 7349–7359. [Google Scholar] [CrossRef] [Green Version]
- Fulmek, P.L.; Wandling, F.; Zdiarsky, W.; Brasseur, G.; Cermak, S.P. Capacitive sensor for relative angle measurement. IEEE Trans. Instrum. Meas. 2002, 51, 1145–1149. [Google Scholar] [CrossRef]
- Jindal, S.K.; Agarwal, Y.K.; Priya, S.; Kumar, A.; Raghuwanshi, S.K. Design and analysis of MEMS pressure transmitter using Mach–Zehnder interferometer and artificial neural networks. IEEE Sens. J. 2018, 18, 7150–7157. [Google Scholar] [CrossRef]
- Zeng, T.; Lu, Y.; Liu, Y.; Yang, H.; Bai, Y.; Hu, P.; Li, Z.; Zhang, Z.; Tan, J. A capacitive sensor for the measurement of departure from the vertical movement. IEEE Trans. Instrum. Meas. 2016, 65, 458–466. [Google Scholar] [CrossRef]
- Arjomandi-Nezhad, A.; Ahmadi, A.; Taheri, S.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M.; Lehtonen, M. Pandemic-Aware Day-Ahead Demand Forecasting using Ensemble Learning. IEEE Access 2022. [Google Scholar] [CrossRef]
- Kwon, O.-K.; An, J.-S.; Hong, S.-K. Capacitive touch systems with styli for touch sensors: A review. IEEE Sens. J. 2018, 18, 4832–4846. [Google Scholar] [CrossRef]
- George, B.; Zangl, H.; Bretterklieber, T.; Brasseur, G. A combined inductive–capacitive proximity sensor for seat occupancy detection. IEEE Trans. Instrum. Meas. 2010, 59, 1463–1470. [Google Scholar] [CrossRef]
- Xia, F.; Campi, F.; Bahreyni, B. Tri-mode capacitive proximity detection towards improved safety in industrial robotics. IEEE Sens. J. 2018, 18, 5058–5066. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan, R.; Ramiar, A.; Ghasemi, A. Numerical investigation into continuous separation of particles and cells in a two-component fluid flow using dielectrophoresis. J. Mol. Liq. 2020, 310, 113211. [Google Scholar] [CrossRef]
- Walia, S.; Mondal, I.; Kulkarni, G.U. Patterned Cu-Mesh-based transparent and wearable touch panel for tactile, proximity, pressure, and temperature sensing. ACS Appl. Electron. Mater. 2019, 1, 1597–1604. [Google Scholar] [CrossRef]
- Chen, T.; Bowler, N. Analysis of a capacitive sensor for the evaluation of circular cylinders with a conductive core. Meas. Sci. Technol. 2012, 23, 045102. [Google Scholar] [CrossRef]
- Yang, M. Development of Electrical Tomography Systems and Application for Milk Flow Metering. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2007. [Google Scholar]
- Sheldon, R.T.; Bowler, N. An interdigital capacitive sensor for nondestructive evaluation of wire insulation. IEEE Sens. J. 2014, 14, 961–970. [Google Scholar] [CrossRef]
- Yang, W.Q. Hardware design of electrical capacitance tomography systems. Meas. Sci. Technol. 1996, 7, 225–232. [Google Scholar] [CrossRef]
- Yang, W.Q.; Peng, L.H. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 2003, 14, R1–R13. [Google Scholar] [CrossRef]
- Zeothout, J.; Boletis, A.; Bleuler, H. High performance capacitive position sensing device for compact active magnetic bearing spindles. JSME Int. J. Ser. B Fluids Therm. Eng. 2003, 46, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Igreja, R.; Dias, C.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2004, 112, 291–301. [Google Scholar] [CrossRef]
- Huang, S.M.; Plaskowski, A.B.; Xie, C.G.; Beck, M.S. Tomographic imaging of two-component flow using capacitance sensors. J. Phys. E Sci. Instrum. 1989, 22, 173–177. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Fernandez-Salmeron, J.; Agudo-Acemel, M.; Lopez-Villanueva, J.A.; Capitan-Vallvey, L.F.; Palma, A.J. Printed electrodes structures as capacitive humidity sensors: A comparison. Sens. Actuators A Phys. 2016, 244, 56–65. [Google Scholar] [CrossRef]
- Lee, J.W.; Min, D.J.; Kim, J.; Kim, W. A 600-dpi capacitive fingerprint sensor chip and image-synthesis technique. IEEE J. Solid-State Circuits 1999, 34, 469–475. [Google Scholar]
- Mohd Syaifudin, A.R.; Mukhopadhyay, S.C.; Yu, P.L. Modelling and fabrication of optimum structure of novel interdigital sensors for food inspection. Int. J. Numer. Model. Electron. Netw. Devices Fields 2012, 25, 64–81. [Google Scholar] [CrossRef]
- Zia, A.I.; Syaifudin, A.M.; Mukhopadhyay, S.C.; Yu, P.L.; Al-Bahadly, I.H.; Gooneratne, C.P.; Kosel, J.; Liao, T.S. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. J. Phys. Conf. Ser. 2013, 439, 012026. [Google Scholar] [CrossRef]
- Khawaja, K.; Seneviratne, L.; Althoefer, K. Wheel-tooling gap measurement system for conform extrusion machinery based on a capacitive sensor. J. Manuf. Sci. Eng. 2010, 127, 394–401. [Google Scholar] [CrossRef]
- Addabbo, T.; Bertocci, F.; Fort, A.; Mugnaini, M.; Panzardi, E.; Vignoli, V.; Cinelli, C. A clearance measurement system based on on component multilayer tri-axial capacitive probe. Measurement 2018, 124, 575–581. [Google Scholar] [CrossRef]
- Petchmaneelumka, W.; Phankamnerd, P.; Rerkratn, A.; Riewruja, V. Capacitive sensor readout circuit based on sample and hold method. Energy Rep. 2022, 8, 1012–1018. [Google Scholar] [CrossRef]
- Kim, Y.S.; Cho, S.I.; Shin, D.H.; Lee, J.; Baek, K.H. Single chip dual plate capacitive proximity sensor with high noise immunity. IEEE Sens. J. 2013, 14, 309–310. [Google Scholar] [CrossRef]
- Lee, H.-K.; Chang, S.-I.; Yoon, E. A capacitive proximity sensor in dual implementation with tactile imaging capability on a single flexible platform for robot assistant applications. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 January 2006; pp. 606–609. [Google Scholar]
- Kohama, T.; Tsuji, S. Tactile and proximity measurement by 3D tactile sensor using self-capacitance measurement. In Proceedings of the IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Qiu, S.; Huang, Y.; He, X.; Sun, Z.; Liu, P.; Liu, C. A dual-mode proximity sensor with integrated capacitive and temperature sensing units. Meas. Sci. Technol. 2015, 26, 105101. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kim, T.; Han, H.; Shin, H.Y.; Nguyen, C.T.; Phung, H.; Choi, H.R. Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils. Mater. Res. Express 2018, 5, 015604. [Google Scholar] [CrossRef]
- Lu, Y.; Bai, Y.; Zeng, T.; Li, Z.; Zhang, Z.; Tan, J. Coplanar capacitive sensor for measuring horizontal displacement in joule balance. In Proceedings of the Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa, ON, Canada, 10–15 July 2016; pp. 1–2. [Google Scholar]
- Lu, X.; Li, X.; Zhang, F.; Wang, S.; Xue, D.; Qi, L.; Wang, H.; Li, X.; Bao, W.; Chen, R. A novel proximity sensor based on parallel plate capacitance. IEEE Sens. J. 2018, 18, 7015–7022. [Google Scholar] [CrossRef]
- Taheri, S.; Talebjedi, B.; Laukkanen, T. Electricity demand time series forecasting based on empirical mode decomposition and long short-term memory. Energy Eng. J. Assoc. Energy Eng. 2021, 118, 1577–1594. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Sarwar, M.S.; Preston, C.; Le Goff, A.; Plesse, C.; Vidal, F.; Cattan, E.; Madden, J.D. Transparent stretchable capacitive touch sensor grid using ionic liquid electrodes. Extrem. Mech. Lett. 2019, 33, 100574. [Google Scholar] [CrossRef]
- Long, J.; Wang, B. A metamaterial-inspired sensor for combined inductive-capacitive detection. Appl. Phys. Lett. 2015, 106, 074104. [Google Scholar] [CrossRef] [Green Version]
- Böhmländer, D.; Doric, I.; Appel, E.; Brandmeier, T. Video camera and capacitive sensor data fusion for pedestrian protection systems. In Proceedings of the 11th Workshop on Intelligent Solutions in Embedded Systems (WISES), Pilsen, Czech Republic, 10–11 September 2013; pp. 1–7. [Google Scholar]
- Lee, H.K.; Chang, S.I.; Yoon, E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J. 2009, 9, 1748–1755. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, R.C. Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. IEEE Trans. Ind. Electron. 1998, 45, 886–894. [Google Scholar] [CrossRef]
- Ye, Y.; Deng, J.; Shen, S.; Hou, Z.; Liu, Y. A novel method for proximity detection of moving targets using a large-scale planar capacitive sensor system. Sensors 2016, 16, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Tian, M.; Li, M.; Wang, H.; Shi, Y. All-fabric-based flexible capacitive sensors with pressure detection and non-contact instruction capability. Coatings 2022, 12, 302. [Google Scholar] [CrossRef]
- Čoko, D.; Stančić, I.; Dujić Rodić, L.; Čošić, D. TheraProx: Capacitive proximity sensing. Electronics 2022, 11, 393. [Google Scholar] [CrossRef]
- Wei, Y.; Torah, R.; Li, Y.; Tudor, J. Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sens. Actuators A Phys. 2016, 247, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Dai, W.; Li, C.; Zhou, Z.; Lu, L.; Poon, C.C.Y.; Chen, S.-C.; Zhang, Y.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178–1187. [Google Scholar] [CrossRef]
- Zhang, B.; Xiang, Z.; Zhu, S.; Hu, Q.; Cao, Y.; Zhong, J.; Zhong, Q.; Wang, B.; Fang, Y.; Hu, B.; et al. Dual functional transparent film for proximity and pressure sensing. Nano Res. 2014, 7, 1488–1496. [Google Scholar] [CrossRef]
- Alagi, H.; Navarro, S.E.; Mende, M.; Hein, B. A versatile and modular capacitive tactile proximity sensor. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 290–296. [Google Scholar]
- Ben-Yasharand, G.; Ya’akobovitz, A. Electronic skin with embedded carbon nanotubes proximity sensors. IEEE Trans. Electron Devices 2021, 68, 4098–4103. [Google Scholar] [CrossRef]
- Addabbo, T.; Fort, A.; Mugnaini, M.; Rocchi, S.; Vignoli, V. A heuristic reliable model for guarded capacitive sensors to measure displacements. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; pp. 1488–1491. [Google Scholar]
- Bu, D.; Li, S.Q.; Sang, Y.M.; Qiu, C.J. High transparency flexible sensor for pressure and proximity sensing. Mod. Phys. Lett. B 2018, 32, 1850394. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Han, H.S.; Shin, H.Y.; Nguyen, C.T.; Phung, H.; Van Hoang, H.; Choi, H.R. Highly sensitive flexible proximity tactile array sensor by using carbon micro coils. Sens. Actuators A Phys. 2017, 266, 166–177. [Google Scholar] [CrossRef]
- Hein, B.; Li, X.; Alagi, H. Two Examples of Using Machine Learning for Processing Sensor Data of Capacitive Proximity Sensors. Available online: https://arxiv.org/ftp/arxiv/papers/1903/1903.08495.pdf (accessed on 1 December 2019).
- Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic polyurethane flexible capacitive proximity sensor reinforced by CNTs for applications in the creative industries. Sci. Rep. 2021, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.; Gonzalez, M.; Dalir, H. An integrated nanocomposite proximity sensor: Machine learning-based optimization, simulation, and experiment. Nanomaterials 2022, 12, 1269. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.; Pasharavesh, A.; Agarwal, M.; Dalir, H. Mathematical model and experimental design of nanocomposite proximity sensors. IEEE Access 2020, 8, 153087–153097. [Google Scholar] [CrossRef]
Sensing Technique | Detected Objects | Sensing Element | Operational Range | Standard Detective Circuit | Tangible Limitation |
---|---|---|---|---|---|
Optical | Non-conductive and conductive | Lighting resource | Frequency and condition dependent | Converter (V–I) | Lenses and object preparation needed |
Ultrasonic | Non-conductive and conductive | Sound producer | Frequency and condition dependent | Digital to analog converter or Sensor modules | Object dependent |
Inductive | Only Conductive | Metal coil | Coil size dependent | Impedance analyzer, LCR oscillator, | - |
Capacitive | Non-conductive and conductive | Conductive electrode | Conductive electrode fabrication/size dependent | Charge amplifier, RC low pass filter, capacitance meter | - |
Reference | Application |
---|---|
[34] | Electrical capacitance tomography |
[35] | Capacitive voltage sensors |
[36] | Capacitive humidity sensors |
[37] | Capacitive gas sensors |
[38] | Displacement detection |
[39] | Muscle action for interaction |
Reference | Application | Shape/Size | Measuring Range | Shielding | Error or Resolution | Method of Measurement |
---|---|---|---|---|---|---|
[44] | Inductive and capacitive sensors integration | 20 mm × 5 mm | 10 mm | × | - | Resonance |
[45] | Ultrasonic and capacitive integration | 60 mm × 30 mm × 0.1 mm | 200 mm | ✓ | 30 mm | CDC:AD7143 |
[63] | Two arrays of 16 × 16 electrodes | 5 mm × 100 mm Rectangle | 170 mm | ✓ | - | 200 kHz charging circuit |
[64] | Woven-polyester fabric, printed on a standard | 180 mm × 180 mm × 3 mm Spiral | 80 mm | × | 0.5 mm | CDC:MTCH112 |
[67] | Temperature and capacitive sensor combined | 7 mm × 3 mm × 0.1 mm Rectangle | 17 mm | ✓ | - | CDC:AD7746 |
[73] | Moving target detection CPS | 310 mm × 190 mm | 60 mm | ✓ | 5 mm | LPF, C/V circuit |
[76] | Symmetrical distribution of electrodes—circular shape | 45 mm × 45 mm Circular | 55 mm | ✓ | 0.3–4.6% | LCR meter |
[47] | Equally distributed sensors (120°) | 85 mm × 40 mm Single | 336 mm | ✓ | 3.3 mm | Neural Network |
Reference | Active Materials and Substrate | Response Time (1 pF) | Shape/Size | Operational Range | Error or Resolution | Other Features | |
---|---|---|---|---|---|---|---|
[15] | AgNW−BC/PDMS fibers | <75 ms | 53 μm Diameter Thickness 10 μm | 0.19 (Skin) | 30 cm | 1 mm | Proximity and Pressure, bacterial cellulose coated with PDMS, Wet spinning for compressibility |
[16] | CNC-m-rGO-epoxy GO (conducting particles) | - | 1 × 2 cm2 Thickness 0.16 mm | 7.8 (Skin) 0.0 (Copper and plastic rod) | 0.6 cm | 0.6 mm | Durability of the touch sensor (100 cycles at the distance of 0.02 cm), Excellent stability and repeatability, Average recovery time (3 s) |
[10,82] | PET-PDMS-AgNWs PDMS (dielectric layer) AgNWS (electrodes) | <40 ms | 7.5 × 2.5 cm2 1 mm Thickness | 0.06–0.12 (Skin) | 9 cm [10] 14 cm [82] | 4.8 mm | All pressure sensing Reversibility (up to 100 kPa) [82] and (50% strain) [10], Stability (2 h), Bending stability (310 cycles and rb = 3 cm) [10] |
[24] | Graphene, acrylic PET, PET (mesh-structured), Graphene (electrodes), Acrylic polymer (dielectric layer) | <60 ms | 6 × 4 cm2 8 × 8 Channels 0.03 mm | 0.66 (iron) 0.10 (skin) | 1 cm (Iron) 7 cm (Skin) | 5 mm | Touch sensing Searchability~9–16% (rb = 0.15 cm) |
[33] | AgNW-PDMS AgNWS (electrodes) PDMS (dielectric layer) | <40 ms | 800 × 2500 μm2 3 μm Thickness | 0.16 (Skin) | 15 cm | 5 mm | Durability (200 cycles in 100 kPa), All pressure sensing Reversibility |
[63] | PCB | - | 0.7 × 0.3 cm2 16 × 16 sensor array | 0.18 (Steel) | 8 cm | 1% output frequency | switched-charge amplifier and sampling/filtering for noise rejection, |
[67] | CMC-MWCNT-silicone CMC (elastomer composite sheet) | - | 3.3 × 3.3 cm2 FPCB electrode layer Thickness 0.6 mm | 0.10 (Copper) | 6 cm | 2 mm | Inductive and capacitive sensing modes, Repeatability and reversibility (5 cycles), Durability (3000 cycles for 150 kPa), Maximum detection 1.5% |
[74] | PDMS Copper Electrodes | - | 600 × 600 μm2 16 × 16 capacitor array | 0.5 (Plastics, PVC, Acrylic, HDPE) | 17 cm | 0.5 mm | Dual-mode functioning custom circuit board, many possible variations of the electrode configuration |
[78] | - | <16 ms | - | - | 5–10 cm | - | Energy efficient using duty-cycling power supply, boot-up self-adjustment mechanism via digital potentiometer, Wide variety of applications |
[81] | Fabinks TC-C4001, Polyester woven | <30 ms | 0.4 × 0.4 cm2 Thickness 30 μm | 0.79 (Skin) | 0.1–40 cm | 0.5 mm | 76% less conductive ink via loop design, Microchip MTCH112 to simplify the circuit |
[75] | Micro-Electro-Mechanical | - | sensors size 500 × 50 μm2 electrode width of 10 μm | 0.8 (Skin) | 10–10,000 μm | 0.48 fF/μm | Conductor or nonconductor measuring, batch fabricated via Micro-Electro-Mechanical, Micro sensor size, Capable of measuring permittivity |
[87] | PET-PDMS CP coating | <100 ms | 10 × 10 cm2 15 grid lines, Effective line width 3.3 mm | 0.5 (Skin) | 13 cm | - | High flexibility (2 cm), Transparent (90%), Can detect several stimuli, Pressure touch, Minimal noise |
[88] | TPU-CNT | <30 ms | 6 × 2 cm2 Thickness 0.5 mm | 0.3 (Brass, Skin) | 2–22 cm | 0.3 mm | Excellent detection range, Reasonable flexibility and durability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moheimani, R.; Hosseini, P.; Mohammadi, S.; Dalir, H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C 2022, 8, 26. https://doi.org/10.3390/c8020026
Moheimani R, Hosseini P, Mohammadi S, Dalir H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C. 2022; 8(2):26. https://doi.org/10.3390/c8020026
Chicago/Turabian StyleMoheimani, Reza, Paniz Hosseini, Saeed Mohammadi, and Hamid Dalir. 2022. "Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications" C 8, no. 2: 26. https://doi.org/10.3390/c8020026
APA StyleMoheimani, R., Hosseini, P., Mohammadi, S., & Dalir, H. (2022). Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C, 8(2), 26. https://doi.org/10.3390/c8020026