Study of the Adsorption of Bacillus subtilis and Bacillus cereus Bacteria on Enterosorbent Obtained from Apricot Kernels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria
2.2. Obtaining Activated Carbon
2.3. Gas Adsorption
2.4. Determination of the Kinetics of the Adsorption Process of Bacteria on Carbon Enterosorbents
2.5. Adsorption Study
2.6. Scanning Electron Microscopy
2.7. Fourier Transform Infrared Spectra
3. Results and Discussion
4. Conclusions
- The method of synthesis of activated carbon in a fluidized layer allows us to obtain carbon enterosorbents with quality indices that correspond to the requirements imposed by the European Pharmacopoeia Monograph.
- Given that the size of the bacteria is much larger than the diameter of the carbon adsorbent macropores, the adsorption balance of bacteria is established relatively quickly in 75–90 min, and the immobilization of bacteria is achieved on the geometric surface of activated carbon. This phenomenon is also confirmed by the SEM studies presented in the paper.
- The study of the dependence of adsorption processes at different temperatures highlights the fact that the process is exothermic, i.e., with increasing temperature the value of adsorption decreases. The pH value of the solution has a different influence. In the case of Bacillus subtilis the decrease in pH leads to an increase in the amount of immobilized bacteria per unit area of carbon adsorbent, and in the case of Bacillus cereus the effect is the opposite, a decrease in pH leads to a decrease in the number of immobilized bacteria on the carbonic enterosorbent.
- The analysis of FTIR spectra highlights the fact that bacteria are immobilized through the interaction of basic groups such as amines, amides, and pyrenes from their structure with carboxylic, lactonic, and phenolic groups on the surface of activated carbons.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fatullayeva, S.; Tagiyev, D.; Zeynalov, N. A review on enterosorbents and their application in clinical practice: Removal of toxic metals. Colloid Interface Sci. Commun. 2021, 45, 100545. [Google Scholar] [CrossRef]
- Olson, K.R.; Anderson, I.B.; Benowitz, N.L.; Blanc, P.D.; Clark, R.F.; Kearney, T.E.; Kim-Katz, S.Y.; Wu, A.H.B. Poisoning & Drug Overdose, 6th ed.; Olson, K.R., Anderson, I.B., Eds.; McGraw-Hill Medical: New York, NY, USA, 2012; ISBN 978-0-07-166833-0. [Google Scholar]
- Pimpukdee, K.; Kubena, L.F.; Bailey, C.A.; Huebner, H.J.; Afriyie-Gyawu, E.; Phillips, T.D. Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: Protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poult. Sci. 2004, 83, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.D.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.-A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A.; et al. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Chen, W.; Huang, Q.; Cai, P.; Liang, W. Pseudomonas putida adhesion to goethite: Studied by equilibrium adsorption, SEM, FTIR and ITC. Colloids Surf. B Biointerfaces 2010, 80, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zheng, J.; Lin, A.; Xia, H.; Zhang, Z.; Gao, Q.; Lv, W.; Liu, H. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. J. Funct. Foods 2020, 74, 104197. [Google Scholar] [CrossRef]
- Wei, S.; Bahl, M.I.; Baunwall, S.M.D.; Hvas, C.L.; Licht, T.R. Determining Gut Microbial Dysbiosis: A Review of Applied Indexes for Assessment of Intestinal Microbiota Imbalances. Appl. Environ. Microbiol. 2021, 87, e00395-21. [Google Scholar] [CrossRef]
- Venkova, T.; Yeo, C.C.; Espinosa, M. Editorial: The Good, The Bad, and The Ugly: Multiple Roles of Bacteria in Human Life. Front. Microbiol. 2018, 9, 1702. [Google Scholar] [CrossRef] [Green Version]
- Singhrao, S.K.; Robinson, S.; Harding, A. The Role of Bacteria in Personalized Nutrition. In Trends in Personalized Nutrition; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–104. ISBN 9780128164037. [Google Scholar]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Dekaboruah, E.; Suryavanshi, M.V.; Chettri, D.; Verma, A.K. Human microbiome: An academic update on human body site specific surveillance and its possible role. Arch. Microbiol. 2020, 202, 2147–2167. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [Green Version]
- Crump, J.A.; Mintz, E.D. Global trends in typhoid and paratyphoid Fever. Clin. Infect. Dis. 2010, 50, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Anevlavis, S.; Bouros, D. Community acquired bacterial pneumonia. Expert Opin. Pharmacother. 2010, 11, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Abbas, A.K.; Aster, J.C.; Perkins, J.A. (Eds.) Robbins Basic Pathology; Elsevier: Philadelphia, PA, USA, 2018; ISBN 9780323394130. [Google Scholar]
- Mock, M.; Fouet, A. Anthrax. Annu. Rev. Microbiol. 2001, 55, 647–671. [Google Scholar] [CrossRef]
- Howell, C.A.; Mikhalovsky, S.V.; Markaryan, E.N.; Khovanov, A.V. Investigation of the adsorption capacity of the enterosorbent Enterosgel for a range of bacterial toxins, bile acids and pharmaceutical drugs. Sci. Rep. 2019, 9, 5629. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Rong, X.; Cai, P.; Liang, W.; Huang, Q. Effects of Temperature, pH and Salt Concentrations on the Adsorption of Bacillus subtilis on Soil Clay Minerals Investigated by Microcalorimetry. Geomicrobiol. J. 2011, 28, 686–691. [Google Scholar] [CrossRef]
- Zemnukhova, L.; Kharchenko, U.; Beleneva, I. Biomass derived silica containing products for removal of microorganisms from water. Int. J. Environ. Sci. Technol. 2015, 12, 1495–1502. [Google Scholar] [CrossRef]
- Knezev, A. Microbial Activity in Granular Activated Carbon Filters in Drinking Water Treatment; Wageningen University: Wageningen, The Netherlands, 2015; ISBN 9789462572447. [Google Scholar]
- Rivera-Utrilla, J.; Bautista-Toledo, I.; Ferro-García, M.A.; Moreno-Castilla, C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Burchacka, E.; Pstrowska, K.; Beran, E.; Fałtynowicz, H.; Chojnacka, K.; Kułażyński, M. Antibacterial Agents Adsorbed on Active Carbon: A New Approach for S. aureus and E. coli Pathogen Elimination. Pathogens 2021, 10, 1066. [Google Scholar] [CrossRef]
- Maksimova, Y.G. Microorganisms and Carbon Nanotubes: Interaction and Applications (Review). Appl. Biochem. Microbiol. 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Z.; Bhatnagar, A.; Jeyakumar, P.; Wang, H.; Wang, Y.; Li, X. Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. J. Hazard. Mater. 2021, 416, 125915. [Google Scholar] [CrossRef]
- Chwastowski, J.; Staroń, P. Influence of Saccharomyces cerevisiae yeast cells immobilized on Cocos nucifera fibers for the adsorption of Pb(II) ions. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 632, 127735. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Council of Europe, European Directorate for the Quality of Medicines and Healthcare: Strasbourg, France, 2019; ISBN 978-92-871-8912-7.
- Kuptsov, A.H.; Zhizhin, G.N. (Eds.) Handbook of Fourier Transform Raman and Infrared Spectra of Polymers; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1998; ISBN 0-444-82620-3. [Google Scholar]
- Larkin, P. (Ed.) Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2011; ISBN 978-0-12-386984-5. [Google Scholar]
- Stuart, B.H. (Ed.) Infrared Spectroscopy: Fundamentals and Applications; Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2005; ISBN 9780470011140. [Google Scholar]
Sample | SBET, m2/g | Vs, cm3/g | Vmi, cm3/g | Vme, cm3/g |
---|---|---|---|---|
AC-A | 1424 | 1.016 | 0.332 | 0.684 |
Quality Indices | The Set Value | Allowable Value |
---|---|---|
Loss of mass on drying | 1.62% | maximum 15% |
Ash after US STAS | 3.44% | maximum 5% |
Acid-soluble substances | 2.73% | maximum 3% |
Copper content | <3.58 ppm | maximum 25 ppm |
Lead content | <1.25 ppm | maximum 10 ppm |
Zinc content | 19.81 ppm | maximum 25 ppm |
Adsorption power | 40.7 g phenazone at 100 AC | minimum 40.0 g phenazone at 100 AC |
Bacteria | T, °C | pH | qm *, McF × 108/g | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|---|---|
qm, McF × 108/g | KL, L/McF × 108 | R2 | KF | n | R2 | ||||
B. subtilis | 26 | 1.97 | 0.475 | 0.534 | 3.552 | 0.991 | 0.387 | 3.48 | 0.759 |
26 | 4.05 | 0.450 | 0.607 | 1.052 | 0.996 | 0.300 | 2.28 | 0.983 | |
36 | 3.71 | 0.260 | 0.356 | 0.902 | 0.972 | 0.141 | 1.47 | 0.910 | |
B. cereus | 26 | 1.97 | 0.233 | 0.307 | 1.236 | 0.978 | 0.160 | 2.24 | 0.920 |
26 | 3.95 | 0.455 | 0.502 | 3.877 | 0.983 | 0.586 | 1.33 | 0.984 | |
36 | 3.70 | 0.310 | 0.398 | 1.188 | 0.974 | 0.105 | 0.88 | 0.871 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupascu, L.; Petuhov, O.; Timbaliuc, N.; Lupascu, T. Study of the Adsorption of Bacillus subtilis and Bacillus cereus Bacteria on Enterosorbent Obtained from Apricot Kernels. C 2022, 8, 38. https://doi.org/10.3390/c8030038
Lupascu L, Petuhov O, Timbaliuc N, Lupascu T. Study of the Adsorption of Bacillus subtilis and Bacillus cereus Bacteria on Enterosorbent Obtained from Apricot Kernels. C. 2022; 8(3):38. https://doi.org/10.3390/c8030038
Chicago/Turabian StyleLupascu, Lucian, Oleg Petuhov, Nina Timbaliuc, and Tudor Lupascu. 2022. "Study of the Adsorption of Bacillus subtilis and Bacillus cereus Bacteria on Enterosorbent Obtained from Apricot Kernels" C 8, no. 3: 38. https://doi.org/10.3390/c8030038
APA StyleLupascu, L., Petuhov, O., Timbaliuc, N., & Lupascu, T. (2022). Study of the Adsorption of Bacillus subtilis and Bacillus cereus Bacteria on Enterosorbent Obtained from Apricot Kernels. C, 8(3), 38. https://doi.org/10.3390/c8030038