Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes
Abstract
:1. Introduction
2. Carbon Capture Processes
2.1. Pre-Combustion Carbon Capture
2.2. Post-Combustion Carbon Capture
2.3. Oxyfuel Combustion
2.4. Direct Air Capture (DAC)
3. Post-Combustion Carbon Capture Based on the Adsorption Process
3.1. Chemisorbents
3.1.1. Amine-Based Adsorbents
3.1.2. Alkali-Metal/Metal Oxide-Based CO2 Adsorbent
3.2. Physisorbents
3.2.1. Zeolites
3.2.2. Carbonaceous Materials
3.2.3. Mesoporous Silica
3.2.4. Metal Organic Frameworks (MOFs)
4. Post-Combustion Carbon Capture Based on the Absorption Process
- Relatively low cost;
- High absorption rate;
- High capacity of absorbing CO2;
- Low regeneration energy;
- Non-degradable;
- Salt formed must be unstable at the regeneration temperature;
- Non-corrosiveness.
4.1. Chemical Absorbents
4.1.1. Amine-Based Absorbents
4.1.2. Blended Absorbents
4.1.3. Ionic Liquids
4.1.4. Alkali Material Absorbents
4.2. Physical Absorbents
5. Mechanisms, Thermodynamics, and Kinetics of Absorption and Adsorption
5.1. Absorption
5.2. Adsorption
6. Conclusions, Opportunities, and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Nitrous oxide emission during wastewater treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef] [PubMed]
- Yoro, K.O.; Daramola, M.O. Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 3–28. [Google Scholar]
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Le Treut, H.; Sommerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M.; Widmann, M. Historical Overview of Climate Change Science. 4th Assessment Report In IPCC WG1; National Oceanic and Atmospheric Administration, Carbon Dioxide Now More Than 50% Higher Than Pre-Industrial Levels, US Department of Commerce. 2006. Available online: https://archive.ipcc.ch/pdf/assessment-report/ar4/wg1/drafts/fod/Ch01_FOD_Text_TSU_FINAL.pdf (accessed on 3 June 2022).
- Rackley, S.A. Carbon Capture and Storage; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; de la Rue du Can, S. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, I.J.; Lewis, C.; Lin, S.J. The forecast of motor vehicle, energy demand and CO2 emission from Taiwan’s road transportation sector. Energy Policy 2009, 37, 2952–2961. [Google Scholar] [CrossRef]
- González, D.; Martínez, M. Changes in CO2 emission intensities in the Mexican industry. Energy Policy 2012, 51, 149–163. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, F.B. Effects of CO2 Emission on Health & Environment: Evidence from fuel ssources in Pakistani Industry. Pak. J. Eng. Technol. Sci. 2016, 5, 112–126. [Google Scholar]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, R.S. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Adie, K.; Cowen, T.; Thaysen, E.M.; Heinemann, N.; Butler, I.B.; Wilkinson, M.; Edlmann, K. Geological Hydrogen Storage: Geochemical Reactivity of Hydrogen with Sandstone Reservoirs. ACS Energy Lett. 2022, 7, 2203–2210. [Google Scholar] [CrossRef]
- Beér, J.M. High efficiency electric power generation: The environmental role. Prog. Energy Combust. Sci. 2007, 33, 107–134. [Google Scholar] [CrossRef]
- Nord, L.O.; Bolland, O. Carbon Dioxide Emission Management in Power Generation; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Fischer, R.; Hargita, Y.; Günter, S. Insights from the ground level? A content analysis review of multi-national REDD+ studies since 2010. For. Policy Econ. 2016, 66, 47–58. [Google Scholar] [CrossRef]
- Rackley, S.A. 1—Introduction. In Carbon Capture and Storage, 2nd ed.; Rackley, S.A., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2017; pp. 3–21. [Google Scholar]
- Hasan, M.M.F.; Zantye, M.S.; Kazi, M.-K. Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective. Comput. Chem. Eng. 2022, 166, 107925. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, L.; Xu, D.; Ciora, R.; Liu, P.K.T.; Manousiouthakis, V.I.; Tsotsis, T.T. A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture. J. Membr. Sci. 2020, 605, 118028. [Google Scholar] [CrossRef]
- Jansen, D.; Gazzani, M.; Manzolini, G.; Dijk, E.v.; Carbo, M. Pre-combustion CO2 capture. Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Arora, A. Advancements in carbon capture technologies: A review. J. Clean. Prod. 2022, 373, 133932. [Google Scholar] [CrossRef]
- Li, H.; Yan, D.; Zhang, Z.; Lichtfouse, E. Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model. Environ. Chem. Lett. 2019, 17, 1397–1404. [Google Scholar] [CrossRef]
- Zaman, M.; Lee, J.H. Carbon capture from stationary power generation sources: A review of the current status of the technologies. Korean J. Chem. Eng. 2013, 30, 1497–1526. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Simões, M. Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des. 2011, 89, 1446–1460. [Google Scholar] [CrossRef]
- Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Mukherjee, A.; Okolie, J.A.; Abdelrasoul, A.; Niu, C.; Dalai, A.K. Review of post-combustion carbon dioxide capture technologies using activated carbon. J. Environ. Sci. 2019, 83, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Limiting the Magnitude of Future Climate Change; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Ma, C.; Pietrucci, F.; Andreoni, W. Capture and Release of CO2 in Monoethanolamine Aqueous Solutions: New Insights from First-Principles Reaction Dynamics. J. Chem. Theory Comput. 2015, 11, 3189–3198. [Google Scholar] [CrossRef] [PubMed]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 2010, 30, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Argyle, M.D.; Dellenback, P.A.; Fan, M. Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Prog. Energy Combust. Sci. 2018, 67, 188–205. [Google Scholar] [CrossRef]
- Jayakumar, A.; Gomez, A.; Mahinpey, N. Post-combustion CO2 capture using solid K2CO3: Discovering the carbonation reaction mechanism. Appl. Energy 2016, 179, 531–543. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Scholes, C.A.; Ho, M.T.; Wiley, D.E.; Stevens, G.W.; Kentish, S.E. Cost competitive membrane—Cryogenic post-combustion carbon capture. Int. J. Greenh. Gas Control 2013, 17, 341–348. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y.; Zhang, L.; Chen, Y.; Ju, S. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. J. Nat. Gas Sci. Eng. 2014, 19, 311–316. [Google Scholar] [CrossRef]
- Miller, B.G. 13—Carbon Dioxide Emissions Reduction and Storage. In Clean Coal Engineering Technology, 2nd ed.; Miller, B.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 609–668. [Google Scholar]
- Wang, M.; Yao, L.; Wang, J.; Zhang, Z.; Qiao, W.; Long, D.; Ling, L. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture. Appl. Energy 2016, 168, 282–290. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Dabrowski, A. Adsorption--from theory to practice. Adv Colloid Interface Sci 2001, 93, 135–224. [Google Scholar] [CrossRef]
- del Mar Orta, M.; Martín, J.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of propranolol onto montmorillonite: Kinetic, isotherm and pH studies. Appl. Clay Sci. 2019, 173, 107–114. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Swiatkowski, A.; Buczek, B. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chem. Eng. J. 2017, 308, 408–418. [Google Scholar] [CrossRef]
- Abd, A.A.; Naji, S.Z.; Hashim, A.S.; Othman, M.R. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. J. Environ. Chem. Eng. 2020, 8, 104142. [Google Scholar] [CrossRef]
- Atif, M.; Haider, H.Z.; Bongiovanni, R.; Fayyaz, M.; Razzaq, T.; Gul, S. Physisorption and chemisorption trends in surface modification of carbon black. Surf. Interfaces 2022, 31, 102080. [Google Scholar] [CrossRef]
- Firdaus, R.M.; Desforges, A.; Rahman Mohamed, A.; Vigolo, B. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. J. Clean. Prod. 2021, 328, 129553. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E.S. Amino functionalized mesostructured SBA-15 silica for CO2 capture: Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Microporous Mesoporous Mater. 2012, 158, 309–317. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, Y.; Zhang, K.; Chen, H.; Yang, Y. CO2 adsorption performance of different amine-based siliceous MCM-41 materials. J. Energy Chem. 2015, 24, 322–330. [Google Scholar] [CrossRef]
- Crone, M.; Türk, M. Thermodynamics of adsorption of carbon dioxide on different metal oxides at temperatures from 313 to 353 K and pressures up to 25 MPa. J. Supercrit. Fluids 2022, 182, 105461. [Google Scholar] [CrossRef]
- Yusof, S.M.; Othaman, R.; Setiabudi, H.D.; Teh, L.P. Modified fibrous silica for enhanced carbon dioxide adsorption: Role of metal oxides on physicochemical properties and adsorption performance. J. Solid State Chem. 2021, 294, 121845. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Gong, J.; Zhan, X.; Zeng, Y. Exploring a New Method to Study the Effects of Surface Functional Groups on Adsorption of CO(2) and CH(4) on Activated Carbons. Langmuir 2020, 36, 3862–3870. [Google Scholar] [CrossRef] [PubMed]
- Balou, S.; Babak, S.E.; Priye, A. Synergistic Effect of Nitrogen Doping and Ultra-Microporosity on the Performance of Biomass and Microalgae-Derived Activated Carbons for CO(2) Capture. ACS Appl. Mater. Interfaces 2020, 12, 42711–42722. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, D.-W.; Ahn, W.-S. CO2 capture using zeolite 13X prepared from bentonite. Appl. Surf. Sci. 2014, 292, 63–67. [Google Scholar] [CrossRef]
- Rahmah, W.; Kadja, G.T.M.; Mahyuddin, M.H.; Saputro, A.G.; Dipojono, H.K.; Wenten, I.G. Small-pore Zeolite and Zeotype Membranes for CO2 Capture and Sequestration—A Review. J. Environ. Chem. Eng. 2022, 10, 108707. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Hu, L.; Cai, S.; Wu, L.; Kawi, S. Carbonaceous materials as adsorbents for CO2 capture: Synthesis and modification. Carbon Capture Sci. Technol. 2022, 3, 100039. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Masoudi Soltani, S. Impact of Surface Functional Groups and Their Introduction Methods on the Mechanisms of CO2 Adsorption on Porous Carbonaceous Adsorbents. Carbon Capture Sci. Technol. 2022, 3, 100045. [Google Scholar] [CrossRef]
- Ren, H.; Li, H.; Shen, H.; Liu, Y. Experimental study on CO2 adsorption with silica-supported ionic liquid in a high gravity reactor. Fuel 2023, 331, 125932. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, K.; Liu, R.; Tian, Y.; Kong, B.; Qi, G. Synthesis and CO2 adsorption performance of TEPA-loaded cellulose whisker/silica composite aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127675. [Google Scholar] [CrossRef]
- González, C.M.O.; Morales, E.M.C.; Tellez, A.d.M.N.; Quezada, T.E.S.; Kharissova, O.V.; Méndez-Rojas, M.A. Chapter 18—CO2 capture by MOFs. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Kharisov, B., Kharissova, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 407–448. [Google Scholar]
- Ha, N.T.T.; Thao, H.T.; Ha, N.N. Physisorption and chemisorption of CO2 on Fe-MIL-88B derivatives: Impact of the functional groups on the electronic properties and adsorption tendency—A theoretical investigation. J. Mol. Graph. Model. 2022, 112, 108124. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Zhao, A.; Shimizu, G.K.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Lara, Y.; Romeo, L.M. Amine-impregnated Alumina Solid Sorbents for CO2 Capture. Lessons Learned. Energy Procedia 2017, 114, 2372–2379. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, F.; He, Y.; Xiao, P.; Webley, P.A. Impact of operating parameters on CO2 capture using carbon monolith by Electrical Swing Adsorption technology (ESA). Chem. Eng. J. 2017, 327, 441–453. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Wang, X.; Song, C. Carbon Capture from Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020, 8, 560849. [Google Scholar] [CrossRef]
- Zhang, H.; Goeppert, A.; Prakash, G.K.S.; Olah, G. Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO2 from various sources including dry air. RSC Adv. 2015, 5, 52550–52562. [Google Scholar] [CrossRef]
- Kong, Y.; Shen, X.-D.; Cui, S. Amine hybrid zirconia/silica composite aerogel for low-concentration CO2 capture. Microporous Mesoporous Mater. 2016, 236, 269–276. [Google Scholar] [CrossRef]
- Ojeda, M.; Mazaj, M.; Garcia, S.; Xuan, J.; Maroto-Valer, M.M.; Logar, N.Z. Novel Amine-impregnated Mesostructured Silica Materials for CO2 Capture. Energy Procedia 2017, 114, 2252–2258. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Zhao, B.; Qiao, W.; Long, D.; Ling, L. Mesoporous Carbon-Supported Solid Amine Sorbents for Low-Temperature Carbon Dioxide Capture. Ind. Eng. Chem. Res. 2013, 52, 5437–5444. [Google Scholar] [CrossRef]
- Yu, J.; Xie, L.H.; Li, J.R.; Ma, Y.; Seminario, J.M.; Balbuena, P.B. CO(2) Capture and Separations Using MOFs: Computational and Experimental Studies. Chem. Rev. 2017, 117, 9674–9754. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, J.; Wang, W.; Li, L.; Li, J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta. Ind. Eng. Chem. Res. 2013, 52, 17856–17864. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795–6803. [Google Scholar] [CrossRef]
- Sartori, G.; Savage, D.W. Sterically hindered amines for carbon dioxide removal from gases. Ind. Eng. Chem. Fundam. 1983, 22, 239–249. [Google Scholar] [CrossRef]
- Donaldson, T.L.; Nguyen, Y.N. Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes. Ind. Eng. Chem. Fundam. 1980, 19, 260–266. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, S.; Ma, K.; Liang, B.; Tang, S.; Liu, C.; Yue, H. Amine-functionalized mesoporous monolithic adsorbents for post-combustion carbon dioxide capture. Chem. Eng. J. 2021, 413, 127675. [Google Scholar] [CrossRef]
- Chitsiga, T.; Daramola, M.O.; Wagner, N.; Ngoy, J. Effect of the Presence of Water-soluble Amines on the Carbon Dioxide (CO2) Adsorption Capacity of Amine-grafted Poly-succinimide (PSI) Adsorbent During CO2 Capture. Energy Procedia 2016, 86, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Ra Cho, A.; Kim, H.; Won, Y.; Lee, Y.-R.; Kim, J.-Y.; Nam, H.; Jo, S.-H.; Cheol Park, Y.; Lee, D.-H. Epoxide functionalization of a pentaethylenehexamine adsorbent supported on macroporous silica for post-combustion CO2 capture. Fuel 2022, 325, 124938. [Google Scholar] [CrossRef]
- Ahmed, S.; Ramli, A.; Suzana, Y. Adsorption Behaviour of Tetraethylenepentamine-Functionalized Si-MCM-41 for CO2 Adsorption. Chem. Eng. Res. Des. 2017, 122, 33–42. [Google Scholar] [CrossRef]
- Atta-Obeng, E.; Dawson-Andoh, B.; Felton, E.; Dahle, G. Carbon Dioxide Capture Using Amine Functionalized Hydrothermal Carbons from Technical Lignin. Waste Biomass Valorization 2019, 10, 2725–2731. [Google Scholar] [CrossRef]
- Lourenço, M.A.O.; Fontana, M.; Jagdale, P.; Pirri, C.F.; Bocchini, S. Improved CO adsorption properties through amine functionalization of multi-walled carbon nanotubes. Chem. Eng. J. 2021, 414, 128763. [Google Scholar] [CrossRef]
- Kondakindi, R.; McCumber, G.; Aleksic, S.; Whittenberger, W.; Abraham, M. Na2CO3-based sorbents coated on metal foil: CO2 capture performance. Int. J. Greenh. Gas Control 2013, 15, 65–69. [Google Scholar] [CrossRef]
- Seggiani, M.; Puccini, M.; Vitolo, S. Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration. Int. J. Greenh. Gas Con. 2013, 17, 25–31. [Google Scholar] [CrossRef]
- Durán-Muñoz, F.; Romero-Ibarra, I.C.; Pfeiffer, H. Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): A new option for high-temperature CO2 capture. J. Mater. Chem. A 2013, 1, 3919–3925. [Google Scholar] [CrossRef]
- Ma, X.C.; Li, L.Q.; Chen, R.F.; Wang, C.H.; Zhou, K.; Li, H.L. Doping of alkali metals in carbon frameworks for enhancing CO2 capture: A theoretical study. Fuel 2019, 236, 942–948. [Google Scholar] [CrossRef]
- Shah, R.; Payne, M.C.; Lee, M.H.; Gale, J.D. Understanding the Catalytic Behavior of Zeolites: A First-Principles Study of the Adsorption of Methanol. Science 1996, 271, 1395–1397. [Google Scholar] [CrossRef]
- Golomeova, M.; Zendelska, A. Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions. In Microporous and Mesoporous Materials; IntechOpen: London, UK, 2016; Volume 24. [Google Scholar]
- Akhtar, F.; Liu, Q.; Hedin, N.; Bergström, L. Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 2012, 5, 7664–7673. [Google Scholar] [CrossRef]
- Kodasma, R.; Fermoso, J.; Sanna, A. Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chem. Eng. J. 2019, 358, 1351–1362. [Google Scholar] [CrossRef]
- Panda, D.; Kumar, E.A.; Singh, S.K. Introducing mesoporosity in zeolite 4A bodies for Rapid CO2 capture. J. CO2 Util. 2020, 40, 101223. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Choi, W.-S.; Jung, S.-H.; Kwon, Y.-J.; Hong, S.; Choi, C.; Lee, J.-W.; Shim, W.-G. Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide. RSC Adv. 2018, 8, 9524–9529. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Huang, J.; Xiao, P.; Singh, R.; Guo, J.; Dehdari, L.; Li, G.K. Amine-immobilized HY zeolite for CO2 capture from hot flue gas. Chin. J. Chem. Eng. 2022, 43, 335–342. [Google Scholar] [CrossRef]
- Panda, D.; Kumar, E.A.; Singh, S.K. Amine Modification of Binder-Containing Zeolite 4A Bodies for Post-Combustion CO2 Capture. Ind. Eng. Chem. Res. 2019, 58, 5301–5313. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Nishio, M.; Mochizuki, Y. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin. Appl. Surf. Sci. 2016, 371, 301–306. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Suzana, Y. Recent methodological trends in nitrogen–functionalized activated carbon production towards the gravimetric capacitance: A mini review. J. Energy Storage 2020, 32, 101757. [Google Scholar] [CrossRef]
- Nandwani, S.K.; Malek, N.I.; Chakraborty, M.; Gupta, S. Insight into the Application of Surface-Active Ionic Liquids in Surfactant Based Enhanced Oil Recovery Processes—A Guide Leading to Research Advances. Energy Fuels 2020, 34, 6544–6557. [Google Scholar] [CrossRef]
- Li, L.; Jia, C.; Zhu, X.; Zhang, S. Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents. J. Clean. Prod. 2020, 256, 120326. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Zhang, G.; Zheng, Y.; Zhao, Y. Preparation of activated carbon from Guhanshan coal and its effect on methane adsorption thermodynamics at different temperatures. Powder Technol. 2022, 395, 424–442. [Google Scholar] [CrossRef]
- Afdhol, M.K.; Amiliana, R.A.; Hanafi, A.; Rachmanda, B. Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent. IOP Conf. Ser. Earth Environ. Sci. 2017, 75, 012009. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Nishio, M.; Shinohara, Y.; Bud, J.; Mochizuki, Y. Production of activated carbon from peat by with natural soda ash and effect of nitrogen addition on the development of surface area. Fuel Process. Technol. 2018, 176, 76–84. [Google Scholar] [CrossRef]
- Guan, H.; Wang, Q.; Wu, X.; Pang, J.; Jiang, Z.; Chen, G.; Dong, C.; Wang, L.; Gong, C. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562. [Google Scholar] [CrossRef]
- Zafanelli, L.F.A.S.; Henrique, A.; Steldinger, H.; Diaz de Tuesta, J.L.; Gläsel, J.; Rodrigues, A.E.; Gomes, H.T.; Etzold, B.J.M.; Silva, J.A.C. 3D-printed activated carbon for post-combustion CO2 capture. Microporous Mesoporous Mater. 2022, 335, 111818. [Google Scholar] [CrossRef]
- Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Roskilly, A.P.; Smallbone, A.J. Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption. Appl. Energy 2019, 245, 1–15. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z.; Xu, Z.; Hui, D. Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials. Nanotechnol. Rev. 2021, 10, 34–49. [Google Scholar] [CrossRef]
- Osler, K.; Twala, N.; Oluwasina, O.O.; Daramola, M.O. Synthesis and Performance Evaluation of Chitosan/Carbon Nanotube (Chitosan/MWCNT) Composite Adsorbent for Post-combustion Carbon Dioxide Capture. Energy Procedia 2017, 114, 2330–2335. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Blom, R.; Andreassen, K.A.; Middelkoop, V.; Rombouts, M.; Borras, A.B. 3D Printed PEI Containing Adsorbents Supported by Carbon Nanostructures for Post-combustion Carbon Capture from Biomass Fired Power Plants. Front. Clim. 2021, 3, 733499. [Google Scholar] [CrossRef]
- Jayakaran, P.; Nirmala, G.; Govindarajan, L. Qualitative and Quantitative Analysis of Graphene-Based Adsorbents in Wastewater Treatment. Int. J. Chem. Eng. 2019, 2019, 9872502. [Google Scholar] [CrossRef]
- Nagarajan, L.; Sampath, K.P.; Arulraj, A.; Senguttuvan, G.; Kumaraguru, K. Solar assisted reduced graphene oxide as adsorbent for carbon dioxide and its kinetic studies. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 116, 113739. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.-H.; Yu, J.; Lv, J.; Dong, C.; Li, J.-R. Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J. Hazard. Mater. 2020, 382, 121018. [Google Scholar] [CrossRef] [PubMed]
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Wang, C.; An, B.; Lin, W. Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS Catal. 2019, 9, 130–146. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Q.; Xia, R.; Meyer, T.J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264. [Google Scholar] [CrossRef]
- Wang, Y.; You, L.; Zhou, K. Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction. Chem. Sci. 2021, 12, 14065–14073. [Google Scholar] [CrossRef]
- Li, G.; Kujawski, W.; Tonkonogovas, A.; Knozowska, K.; Kujawa, J.; Olewnik-Kruszkowska, E.; Pedišius, N.; Stankevičius, A. Evaluation of CO2 separation performance with enhanced features of materials—Pebax® 2533 mixed matrix membranes containing ZIF-8-PEI@[P(3)HIm][Tf2N]. Chem. Eng. Res. Des. 2022, 181, 195–208. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M.B.; Ahmad, S.; Ullah, N.; Inamuddin; Ramakrishna, S. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog. Energy Combust. Sci. 2020, 80, 100849. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Wu, L.; Chen, J. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens. Bioelectron. 2015, 65, 295–301. [Google Scholar] [CrossRef]
- Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci. Technol. 2021, 112, 268–282. [Google Scholar] [CrossRef]
- Liu, C.-S.; Sun, C.-X.; Tian, J.-Y.; Wang, Z.-W.; Ji, H.-F.; Song, Y.-P.; Zhang, S.; Zhang, Z.-H.; He, L.-H.; Du, M. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. Biosens. Bioelectron. 2017, 91, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaikwad, S.; Kim, Y.; Gaikwad, R.; Han, S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J. Environ. Chem. Eng. 2021, 9, 105523. [Google Scholar] [CrossRef]
- Quan, W.; Holmes, H.E.; Zhang, F.; Hamlett, B.L.; Finn, M.G.; Abney, C.W.; Kapelewski, M.T.; Weston, S.C.; Lively, R.P.; Koros, W.J. Scalable Formation of Diamine-Appended Metal–Organic Framework Hollow Fiber Sorbents for Postcombustion CO2 Capture. JACS Au 2022, 2, 1350–1358. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, Y.; Chen, Y.; Lv, D.; Tu, S.; Wu, Y.; Li, Z.; Xia, Q. Highly Efficient Capture of Postcombustion Generated CO2 through a Copper-Based Metal–Organic Framework. Energy Fuels 2021, 35, 610–617. [Google Scholar] [CrossRef]
- Qazvini, O.T.; Telfer, S.G. MUF-16: A Robust Metal–Organic Framework for Pre- and Post-Combustion Carbon Dioxide Capture. ACS Appl. Mater. Interfaces 2021, 13, 12141–12148. [Google Scholar] [CrossRef]
- Tiwari, S.C.; Bhardwaj, A.; Nigam, K.D.P.; Pant, K.K.; Upadhyayula, S. A strategy of development and selection of absorbent for efficient CO2 capture: An overview of properties and performance. Process Saf. Environ. Prot. 2022, 163, 244–273. [Google Scholar] [CrossRef]
- Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: A review. Int. J. Glob. Warm. 2015, 7, 184–225. [CrossRef]
- Mumford, K.A.; Wu, Y.; Smith, K.H.; Stevens, G.W. Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng. 2015, 9, 125–141. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, H.; Gao, H.; Xiao, M.; Luo, X.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z. Kinetics and mechanism study of homogeneous reaction of CO2 and blends of diethanolamine and monoethanolamine using the stopped-flow technique. Chem. Eng. J. 2017, 316, 592–600. [Google Scholar] [CrossRef]
- Park, S.; Bang, J.-H.; Song, K.; Jeon, C.W.; Park, J. Barium carbonate precipitation as a method to fix and utilize carbon dioxide. Chem. Eng. J. 2016, 284, 1251–1258. [Google Scholar] [CrossRef]
- Park, S.; Min, J.; Lee, M.-G.; Jo, H.; Park, J. Characteristics of CO2 fixation by chemical conversion to carbonate salts. Chem. Eng. J. 2013, 231, 287–293. [Google Scholar] [CrossRef]
- Guo, H.; Li, C.; Shi, X.; Li, H.; Shen, S. Nonaqueous amine-based absorbents for energy efficient CO2 capture. Appl. Energy 2019, 239, 725–734. [Google Scholar] [CrossRef]
- Magnone, E.; Lee, H.J.; Shin, M.C.; Park, J.H. A performance comparison study of five single and sixteen blended amine absorbents for CO2 capture using ceramic hollow fiber membrane contactors. J. Ind. Eng. Chem. 2021, 100, 174–185. [Google Scholar] [CrossRef]
- Artanto, Y.; Jansen, J.; Pearson, P.; Puxty, G.; Cottrell, A.; Meuleman, E.; Feron, P. Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal–fired power station. Int. J. Greenh. Gas Control 2014, 20, 189–195. [Google Scholar] [CrossRef]
- Silva-Beard, A.; Flores-Tlacuahuac, A.; Rivera-Toledo, M. Optimal computer-aided molecular design of ionic liquid mixtures for post-combustion carbon dioxide capture. Comput. Chem. Eng. 2022, 157, 107622. [Google Scholar] [CrossRef]
- Sohaib, Q.; Vadillo, J.M.; Gómez-Coma, L.; Albo, J.; Druon-Bocquet, S.; Irabien, A.; Sanchez-Marcano, J. Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach. Int. J. Greenh. Gas Control 2020, 99, 103076. [Google Scholar] [CrossRef]
- Vadillo, J.M.; Gomez-Coma, L.; Garea, A.; Irabien, A. Non-dispersive CO2 separation process using vacuum desorption and ionic liquids as carbon capture and utilization innovative technology. Sep. Purif. Technol. 2022, 301, 121923. [Google Scholar] [CrossRef]
- Ruiz, C.; Rincón, L.; Contreras, R.R.; Sidney, C.; Almarza, J. Sustainable and Negative Carbon Footprint Solid-Based NaOH Technology for CO2 Capture. ACS Sustain. Chem. Eng. 2020, 8, 19003–19012. [Google Scholar] [CrossRef]
- Ruan, H.; Wu, S.; Chen, X.; Zou, J.; Liao, J.; Cui, H.; Dong, Y.; Qiu, Y.; Shen, J. Capturing CO2 with NaOH solution from reject brine via an integrated technology based on bipolar membrane electrodialysis and hollow fiber membrane contactor. Chem. Eng. J. 2022, 450, 138095. [Google Scholar] [CrossRef]
- Valeh-e-Sheyda, P.; Nafchi, N.F. Carbon dioxide capture by the green aqueous sodium hydroxide-glycerol solution in a gas-liquid microchannel contactor. J. Environ. Chem. Eng. 2022, 10, 108666. [Google Scholar] [CrossRef]
- Valluri, S.; Kawatra, S.K. Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture. Fuel Process. Technol. 2021, 212, 106620. [Google Scholar] [CrossRef]
- Siani, G.; Tiecco, M.; Di Profio, P.; Guernelli, S.; Fontana, A.; Ciulla, M.; Canale, V. Physical absorption of CO2 in betaine/carboxylic acid-based Natural Deep Eutectic Solvents. J. Mol. Liq. 2020, 315, 113708. [Google Scholar] [CrossRef]
- Elhambakhsh, A.; Zaeri, M.R.; Mehdipour, M.; Keshavarz, P. Synthesis of different modified magnetic nanoparticles for selective physical/chemical absorption of CO2 in a bubble column reactor. J. Environ. Chem. Eng. 2020, 8, 104195. [Google Scholar] [CrossRef]
- Sattari, A.; Ramazani, A.; Aghahosseini, H.; Aroua, M.K. The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Util. 2021, 48, 101526. [Google Scholar] [CrossRef]
- Sreenivasulu, B.; Gayatri, D.V.; Sreedhar, I.; Raghavan, K.V. A Journey into the process and engineering aspects of carbon capture technologies. Renew. Sustain. Energy Rev. 2015, 41, 1324–1350. [Google Scholar] [CrossRef]
- Rolker, J.; Seiler, M.; Mokrushina, L.; Arlt, W. Potential of Branched Polymers in the Field of Gas Absorption: Experimental Gas Solubilities and Modeling. Ind. Eng. Chem. Res. 2007, 46, 6572–6583. [Google Scholar] [CrossRef]
- Sreedhar, I.; Nahar, T.; Venugopal, A.; Srinivas, B. Carbon capture by absorption—Path covered and ahead. Renew. Sustain. Energy Rev. 2017, 76, 1080–1107. [Google Scholar] [CrossRef]
- Songolzadeh, M.; Ravanchi, M.T.; Soleimani, M. Carbon dioxide capture and storage: A general review on adsorbents. Int. J. Chem. Mol. Eng. 2012, 6, 900–907. [Google Scholar]
- Yaumi, A.; Bakar, M.A.; Hameed, B. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 2017, 124, 461–480. [Google Scholar] [CrossRef]
- Patel, H.A.; Byun, J.; Yavuz, C.T. Carbon dioxide capture adsorbents: Chemistry and methods. ChemSusChem 2017, 10, 1303–1317. [Google Scholar] [CrossRef]
- Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [Google Scholar] [CrossRef]
- Krutka, H.; Sjostrom, S.; Starns, T.; Dillon, M.; Silverman, R. Post-Combustion CO2 Capture using Solid Sorbtents: 1 Mwe Piolet Evaluation. Energy Procedia 2013, 37, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Renita, A.A.; Sivasubramanian, V. Application of computational chemistry for adsorption studies on metal–organic frameworks used for carbon capture. Phys. Sci. Rev. 2020, 5, 20180179. [Google Scholar] [CrossRef]
- Aniruddha, R.; Sreedhar, I.; Reddy, B.M. MOFs in carbon capture-past, present and future. J. CO2 Util. 2020, 42, 101297. [Google Scholar] [CrossRef]
- Rehman, A.; Farrukh, S.; Hussain, A.; Fan, X.; Pervaiz, E. Adsorption of CO2 on amine-functionalized green metal-organic framework: An interaction between amine and CO2 molecules. Environ. Sci. Pollut. Res. 2019, 26, 36214–36225. [Google Scholar] [CrossRef]
- Alonso, G.; Bahamon, D.; Keshavarz, F.; Giménez, X.; Gamallo, P.; Sayós, R. Density Functional Theory-Based Adsorption Isotherms for Pure and Flue Gas Mixtures on Mg-MOF-74. Application in CO2 Capture Swing Adsorption Processes. J. Phys. Chem. C 2018, 122, 3945–3957. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Thi Thanh Chau, V.; Thi Minhthanh, H.; Dinh Du, P.; Thanh Tam Toan, T.; Ngoc Tuyen, T.; Xuan Mau, T.; Quang Khieu, D. Metal-organic framework-101 (MIL-101): Synthesis, kinetics, thermodynamics, and equilibrium isotherms of remazol deep black RGB adsorption. J. Chem. 2018, 2018, 8616921. [Google Scholar] [CrossRef] [Green Version]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
Carbon Capture and Storage (CCS) Technology | Typical Pressure (Bar) | Temperature (°C) | CO2 Concentration (%) |
---|---|---|---|
Pre-combustion | 14–70 | 200–450 | 15–60 |
Post-combustion | 1 | −55 | 17–70 |
Oxyfuel Combustion | 1 | 40–60 | 3–20 |
Direct Air Capture | 1 | 25 | ~0.04 |
Type of Adsorbent | Adsorbents | Advantages | Disadvantages |
---|---|---|---|
Chemisorbents | Amine-based sorbents | Low regeneration energy High adsorption capacity in case of high amine and nitrogen content Stable materials Fast adsorption of carbon dioxide Multiuse sorbents | Expensive synthetic material |
Metal oxides and metal oxides-based sorbents | Common for pre-combustion of CO2 Cost-effective Abundant materials Low toxic substance Durable after various cycles The operation temperature is moderate to high | Require long reaction time Require high energy for regeneration | |
Alkali-metal adsorbents | Low regeneration energy Cost-effective Ability to operate at low temperature below 200 °C | Slow operation adsorbents Durable Irreversible adsorbents in the presence of SO2 and HCl | |
Physisorbents | Zeolites | High adsorption capacity Porous materials Large surface area High stability | Low selectivity of CO2 Large decrease in adsorption with slight increase in temperature |
Carbonaceous materials | Excellent thermal stability Tolerance to moisture Cost-effective Low adsorption operating temperature Abundancy Good conductivity Large surface area Suitable pore sizes and volumes | Low for selectivity to CO2 High thermal sensitivity | |
Mesoporous silica materials | Tuneable structure Good thermal and mechanical stability Large surface area Porous structures Low cost | Low adsorption capacity in the absence of functionalities | |
MOFs | Uniform and tuneable structures Large surface area Ultrahigh porosity Easy functionalization Chemical and thermal stability | Low adsorption capacity at low pressure Sensitive to moisture Sensitive to mixture of gases Expensive generation procedures |
Type of Adsorbent a | Adsorbent b | Surface Area (m2/g) | Pore Size (nm) | Operation Parameters | Regeneration Cycles | Adsorption Capacity Qmax | Ref. | |
---|---|---|---|---|---|---|---|---|
Pressure (bar) | Temp. (°C) | |||||||
Chemical adsorbents | 70T-MM-550 monolithic adsorbent impregnated with TEPA | 10.46 | 0.02 | 1 | 75 | 5 | 151.1 mg g−1 | [78] |
PAA-100% MA | 2.94 | 30.9 | 1.1 | 40 | - | 44.2 g kg−1 | [79] | |
2.0PO-PEHA/MPS | 472 | - | - | 50 | 20 | 1.8 mmol g− 1 | [80] | |
50 wt.% TEPA-functionalized Si-MCM-41 | 11 | 1.8 | 1 | 75 | - | 70.41 mg g−1 | [81] | |
Si-MCM-41 | 993 | 3.1 | 1 | 25 | - | 54.65 mg g−1 | [82] | |
L350 PEI 5% | 1341 | - | - | 30 | - | 2 mmol g−1 | ||
L350 | 2.8 | - | - | 30 | - | 1.54 mmol g−1 | [83] | |
COOH-MWCNT/DETASi | 74 | 1.9–63 | 0.9 | 30 | - | 0.48 mmol g−1 | ||
Physical adsorbents | Li-LSX zeolite | 662 | 0.08–0.18 | 0.15 | 60 | 85 | 4.43 mmol g−1 | [91] |
HZ4A-1−3 with urea | 126 | 0.4–5.5 | 1 | 40 | 10 | 2.86 mmol g−1 | [92] | |
Basalt based zeolite 4A | 726 | - | 15 | 20 | - | 5.9 mmol g−1 | [93] | |
20% ED@HY Zeolite | - | - | - | 90 | 8 | 1.76 mmolg−1 | [94] | |
IBA-Z4A | 32 | 3.8 | 1 | 25 | 10 | 2.56 mmol g–1 | [95] | |
3D-printed monolith activated carbons | - | - | 1.2 | 40 | - | 3.17 mol kg−1 | [105] | |
chitosan/MWCNTs | - | - | 1.1 | 45 | - | 3 mg g–1 | [108] | |
3D-printed PEI/(MWCNT) | 27 | 30 | - | 90 | - | 0.064 mol kg−1 | [109] | |
Hybrid adsorbents | 20% TEPA-impregnated MOF-177 | 585 | - | 1 | 55 | - | 4.6 mmol g–1 | [123] |
2-ampd-Mg2(dobpdc) | - | - | 1 | 40 | - | 2.5 mmol g–1 | [124] | |
Copper based MOF-11 | - | - | 1 | 25 | - | 4.63 mmol g–1 | [125] |
Sorbent | Efficiency (Kg CO2/Kg Sorbent) | Time (min) | Number of Cycles | Temperature (°C) | Reference |
---|---|---|---|---|---|
MEA/H2O | 61.40 | 50 | 2 | 30 | [131] |
DEA/H2O | 81.67 | 55 | 2 | 30 | [131] |
MDEA/H2O | 90.48 | 35 | 2 | 30 | [131] |
MEA/2ME | 91.98 | 60 | 3 | 40 | [133] |
MEA/2EE | 90.00 | 60 | 3 | 40 | [133] |
DEA/2ME | 73.14 | 60 | 3 | 40 | [133] |
Type of Sorbent | Capacity (Kg CO2/Kg Sorbent) | Regeneration Energy (MJ/Kg CO2) | Reagent’s Cost ($/tone of Reagent) | Corrosion |
---|---|---|---|---|
Amine (MEA, DEA, etc.) | 0.40 | 3.9–4.3 | 1400–1800 | Highly corrosive to pipes and equipment |
Alkali Solutions (NaOH, KOH) | 0.55 | 3.5–3.9 | 400–450 | Corrosive to pipes and equipment due to high pH |
Sodium Carbonate | 0.42 | 3.2–3.8 | 225–240 | Non-corrosive |
Isotherm | Description | Non-Linear Expression | Notes | References |
---|---|---|---|---|
Langmuir | Adsorption occurs as a monolayer and every active site on the surface can adsorb a single molecule | - | [157,158] | |
Freundlich | Compatible with heterogenous surfaces and allows the adsorption of multiple layers | - | [158] | |
Toth | An empirical form of Langmuir isotherm with less limitations | When t = 1, the expression is reduced to Langmuir model | [158] | |
Sips | Compatible with heterogenous surfaces and combines Langmuir and Freundlich models | Sips constants | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allangawi, A.; Alzaimoor, E.F.H.; Shanaah, H.H.; Mohammed, H.A.; Saqer, H.; El-Fattah, A.A.; Kamel, A.H. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 2023, 9, 17. https://doi.org/10.3390/c9010017
Allangawi A, Alzaimoor EFH, Shanaah HH, Mohammed HA, Saqer H, El-Fattah AA, Kamel AH. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C. 2023; 9(1):17. https://doi.org/10.3390/c9010017
Chicago/Turabian StyleAllangawi, Abdulrahman, Eman F. H. Alzaimoor, Haneen H. Shanaah, Hawraa A. Mohammed, Husain Saqer, Ahmed Abd El-Fattah, and Ayman H. Kamel. 2023. "Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes" C 9, no. 1: 17. https://doi.org/10.3390/c9010017
APA StyleAllangawi, A., Alzaimoor, E. F. H., Shanaah, H. H., Mohammed, H. A., Saqer, H., El-Fattah, A. A., & Kamel, A. H. (2023). Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C, 9(1), 17. https://doi.org/10.3390/c9010017