Adsorption of Cobalt and Strontium Ions on Plant-Derived Activated Carbons: The Suggested Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification and Characterization of Activated Carbons
- Modification of activated carbons surface by oxidation with nitric acid
- Modification of activated carbons surface by oxidation with nitric acid/urea mixture
- Characterization of activated carbons
- Determination of metals
- Determination of metals species in solution as pH
2.2. Adsorption Experiments
3. Results and Discussion
3.1. Characterization of the Activated Carbons
3.2. Adsorption Studies
3.3. The Suggested Mechanisms for the Adsorption of Co(II)/Sr(II) Ions on Activated Carbons
- The interval of pH 3 ÷ 5. In this pH interval, the oxidized activated carbons adsorb metal ions by ion exchange and the formation of metal–ligand complexes on the surface (Figure 10).
- The pH interval of 5 ÷ 7. For oxidized activated carbon, within this interval, the weak acidic functional groups dissociate, e.g., lactones. At the same time, the species of Co(II), Co(OH)+, Co(OH)2 and Co(OH)3− begin to form in the solution. The schematic presentation of the adsorption of Co(II) ion species on the surface of oxidized activated carbon by ion exchange and complexation is shown in Figure 11.
4. Conclusions
- For pH < pHpzc values, the adsorption of metal ions on activated carbons may occur through the complexation mechanism (between oxygen atoms from C=O groups from the activated carbon surface and metal ions) and electrostatic interactions;
- For the adsorption of metal ions on initial activated carbons (with the basic surface, on the pH interval 3 ÷ 5), the mechanism of adsorption via electrostatic interactions between the Cπ sites and metal ions has been proposed. For oxidized activated carbons, the mechanism of ion exchange between the carboxylic groups and metal ions and the formation of metal–ligand complexes on the surface has been proposed;
- Within the pH interval 5 ÷ 7, the weak acidic functional groups of lactone type dissociate and the mechanism of adsorption of cobalt(II) ion species on the surface of the oxidized activated carbon via ion exchange and complexation has been proposed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fergusson, J.E. The Heavy Elements: Chemistry. In Environmental Impact and Health Effects; Pergamon Press: Oxford, UK, 1990; pp. 211–212. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 3, pp. 133–164. [Google Scholar] [CrossRef] [Green Version]
- Meena, A.K.; Kadirvelu, K.; Mishraa, G.K.; Rajagopal, C.; Nagar, P.N. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J. Hazard. Mater. 2008, 150, 619–625. [Google Scholar] [CrossRef]
- Coelho, G.F.; Goncalves, A.C., Jr.; Tarley, C.R.T.; Casarin, J.; Nacke, H.; Francziskowski, M.A. Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L. Ecol. Eng. 2014, 73, 514–525. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Lerebours, A.; Stentiford, G.D.; Lyons, B.P.; Bignell, J.P.; Derocles, S.A.P.; Rotchell, J.M. Genetic Alterations and Cancer Formation in a European Flatfish at Sites of Different Contaminant Burdens. Environ. Sci. Technol. 2014, 48, 10448–10455. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988, 35, 95–125. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Mikhalovsky, S.; Voytko, O.; Demchenko, V.; Demchenko, P. Enterosorption in the treatment of heavy metal poisoning. Chem. J. Mold. 2021, 16, 9–27. [Google Scholar] [CrossRef]
- Mishra, S.P. Adsorption-desorption of heavy metal ions. Curr. Sci. 2014, 107, 601–612. [Google Scholar]
- Bisht, R.; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2016, 7, 387–419. [Google Scholar]
- Lupascu, T. Activated Carbons from Vegetal Raw Materials; Stiinta: Chisinau, Moldova, 2004; 224p. (In Romanian) [Google Scholar]
- Thouraya, B.; Abdelmottaleb, O. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environ. Sci. Pollut. Res. 2015, 23, 15852–15861. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, X.; Deng, B.; Lu, S.; Zhang, Y.; Bi, B.; Ren, Z. Equilibrium adsorption study of the adsorptive removal of Cd2+ and Cr6+ using activated carbon. Environ. Sci. Pollut. Res. 2018, 25, 25538–25550. [Google Scholar] [CrossRef]
- Duca, G.; Ciobanu, M.; Lupascu, T.; Povar, I. Adsorption of strontium ions from aqueous solutions on nut shells activated carbons. Chem. J. Mold. 2018, 13, 69–73. [Google Scholar] [CrossRef]
- Ciobanu, M.; Lupascu, T.; Mitina, T.; Povar, I. Adsorption of Sr2+ ions from aqueous solutions on the activated carbon CAN-7 under dynamic conditions. In Proceedings of the Environment and Industry SIMI, Bucharest, Romania, 20–21 September 2018; pp. 23–30. [Google Scholar] [CrossRef]
- Geetha, K.S.; Belagali, S.L. Removal of Heavy Metals and Dyes Using Low Cost Adsorbents from Aqueous Medium-, A Review. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 4, 56–68, e-ISSN: 2319-2402, p-ISSN: 2319-2399. [Google Scholar]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Bhawana, J.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Álvarez, P.M.; Alvim-Ferraz, M.C.M.; Dias, J.M. Activated Carbon Modifications to Enhance Its Water Treatment Applications. An Overview. J. Hazard. Mater. 2011, 187, 1–23. [Google Scholar] [CrossRef]
- Trikhleb, V.A.; Trikhleb, L.M. Method for Production of Carbon Cation Exchanger. Patent RU2105715 C1, 27 February 1998. (In Russian). [Google Scholar]
- Nastas, R.; Ginsari, I.; Lupascu, T. Vegetal active carbons for adsorption of toxic metal ions. In Proceedings of the International Conference Achievements and Perspectives of Modern Chemistry, Chisinau, Moldova, 9–11 October 2019; p. 183, ISBN 978-9975-62-428-2. [Google Scholar]
- Nastas, R. Specific Surface Properties of the Carbonaceous Adsorbents. Summary of the Ph.D. Thesis in Chemical Sciences. Ph.D. Thesis, Moldova State University, Chisinau, Moldova, 23 June 2006. (In Romanian). [Google Scholar]
- Ginsari, I. Evaluation of the Influence of Carbonaceous Adsorbent Surface Chemistry on the Adsorption Process of Pollutants. Ph.D. Thesis, Moldova State University, Chisinau, Moldova, 17 September 2021. (In Romanian). [Google Scholar]
- Ermolenko, I.N.; Liubliner, I.P.; Guliko, N.V. Element-Containing Carbons Fiber Materials; Science and Technology: Minsk, Belarus, 1982; p. 272. (In Russian) [Google Scholar]
- STAS 5388-80; Vegetal Activated Carbon. Testing Methods. Editura Tehnică: București, Romania, 1980; 18p. (In Romanian)
- Boehm, H.P.; Diehl, E.; Heck, W.; Sappok, R. Surface oxides of carbon. Angew. Chem. Int. Ed. 1964, 3, 669–677. [Google Scholar] [CrossRef]
- Boehm, H. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1995, 5, 759–769. [Google Scholar] [CrossRef]
- Nastas, R.; Rusu, V.; Lupascu, T. Establishing the acid-base properties of activated carbons. Stud. Univ. Mold. 2016, 96, 170–177. (In Romanian) [Google Scholar]
- Puziy, A.M.; Poddubnaya, O.I.; Gawdzik, B.; Sobiesiak, M.; Sprynskyy, M. Structural Evolution of Polyimide-Derived Carbon during Phosphoric Acid Activation. C 2022, 8, 47. [Google Scholar] [CrossRef]
- Provencher, S.W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27, 213–227. [Google Scholar] [CrossRef]
- Provencher, S.W. CONTIN: A General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations. Comput. Phys. Commun. 1982, 27, 229–242. [Google Scholar] [CrossRef]
- Puziy, A.M.; Matynia, T.; Gawdzik, B.; Poddubnaya, O.I. Use of CONTIN for Calculation of Adsorption Energy Distribution. Langmuir 1999, 15, 6016–6025. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Ritter, J.A.; Ebner, A.D.; Holland, C.E. Elucidation of the Ion Binding Mechanism in Heterogeneous Carbon-Composite Adsorbents. Carbon 2001, 39, 2313–2324. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ Ver.4.0 (4.04). 2023. Available online: https://vminteq.com/ (accessed on 3 May 2023).
- Tien, C.; Ramarao, B.V. On the significance and utility of the Lagergren model and the pseudo second-order model of batch adsorption. Sep. Sci. Technol. 2017, 52, 975–986. [Google Scholar] [CrossRef]
- Ho, Y.S. Removal of metal ions from sodium arsenate solution using tree fern. Process Saf. Environ. Prot. 2003, 81, 352–356. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Ferro-Garcia, M.A.; Joly, J.P.; Bautista-Toledo, I.; Carrasco-Marin, F.; Rivera-Utrilla, J. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 1995, 11, 4386–4392. [Google Scholar] [CrossRef]
- Sheindorf, C.; Rebhun, M.; Sheintuch, M. A Freundlich-type multicomponent isotherm. J. Colloid Surf. Sci. 1981, 79, 136–142. [Google Scholar] [CrossRef]
- Hutson, N.D.; Yang, R.T. Theoretical Basis for the Dubinin-Radushkevitch (D-R) Adsorption Isotherm Equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Johnson, R.D.; Arnold, F.H. The Temkin isotherm describes heterogeneous protein adsorption. Biochim. Biophys. Acta 1995, 1247, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Nastas, R.; Rusu, V.; Giurginca, M.; Meghea, A.; Lupascu, T. Alteration of Chemical Structure of the Active Vegetal Coals. Rev. De Chim. 2008, 59, 159–164. [Google Scholar] [CrossRef]
- Akolekar, D.B.; Bhargava, S.K. Influence of thermal, hydrothermal, and acid-base treatments on structural stability and surface properties of macro- meso-, and microporous carbons. J. Colloid Interface Sci. 1999, 216, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, J. Infrared spectroscopy in surface chemistry of carbons. In Chemistry and Physics of Carbon; Thrower, P.A., Ed.; Marcel Dekker: New York, NY, USA, 1989; Volume 21, pp. 147–380. [Google Scholar]
- Bingzheng, L. Characterization of pore structure and surface chemistry of activated carbons—A Review. In Fourier Transform—Materials Analysis; Salih, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 165–190. [Google Scholar]
- Rodriguez-Reinoso, F.; Molina-Sabio, M. Textural and chemical characterization of microporous carbons. Adv. Colloid Interface Sci. 1998, 76–77, 271–294. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Demirbas, E. Adsorption of Cobalt(II) Ions from Aqueous Solution onto Activated Carbon Prepared from Hazelnut Shells. Adsorpt. Sci. Technol. 2003, 21, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hao, Y.; Wang, X.; Chen, Z. Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from Xanthoceras Sorbifolia Bunge hull: Mechanisms, kinetics and influencing parameters. Water Sci. Technol. 2017, 75, 1849–1861. [Google Scholar] [CrossRef]
- Prabakaran, R.; Arivoli, S. Removal of Cobalt (II) from Aqueous Solutions by Adsorption on Low cost activated carbon. Int. J. Sci. Eng. Technol. Res. 2013, 2, 271–283. [Google Scholar]
- Vinod, K.G.; Ganjali, M.R.; Nayak, A.; Bhushan, B.; Agarwal, S. Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem. Eng. J. 2012, 197, 330–342. [Google Scholar]
- Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; Da Cunha, B.M.; Cardoso, N.F.; Brasil, J.L.; Dias, S.L.P. Pecan Nutshell as Biosorbent to Remove Cu(II), Mn(II) and Pb(II) from Aqueous Solutions. J. Hazard. Mater 2009, 162, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Lupascu, T.; Ciobanu, M.; Petuhov, O. Inflection points on the absorbion isothermes of strontium ion on oxidate actived carbons. In Proceedings of the International Conference Achievements and Perspectives of Modern Chemistry, Chisinau, Moldova, 9–11 October 2019; p. 81. [Google Scholar]
- Yakout, S.M.; Elsherif, E. Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon–Sci. Technol. Carbon–Sci. Technol. 2010, 1, 144–153. [Google Scholar]
- Shawabkeh, R.A.; Rockstraw, D.A.; Bhada, R.K. Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 2002, 40, 781–786. [Google Scholar] [CrossRef]
- Arifi, A. Adsorption of Cesium, Thallium, Strontium and Cobalt Radionuclides Using Activated Carbon. Asian J. Chem. 2010, 23, 111–115. [Google Scholar]
- Riddhish, B.R.; Bhavna, S.A. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arab. J. Chem. 2015, 8, 414–426. [Google Scholar]
- Ciobanu, M.; Botan, V.; Lupascu, T.; Mitina, T.; Rusu, M. Adsorption of strontium ions from water on modified activated carbons. Chem. J. Moldova. Gen. Ind. Ecol. Chem. 2016, 11, 26–33. [Google Scholar] [CrossRef]
- Girgis, B.S.; Attia, A.A.; Fathy, N.A. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 79–87. [Google Scholar] [CrossRef]
- Mamba, B.B.; Nyembe, D.W.; Mulaba-Bafubiandi, A.F. Removal of copper and cobalt from aqueous solutions using natural clinoptilolite. Water SA 2012, 35, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917. [Google Scholar] [CrossRef]
- Radovic, L.R. Surfaces of Nanoparticles and Porous Materials; Schwarz, J.A., Contescu, C.I., Eds.; Marcel Dekker: New York, NY, USA, 1999; 787p. [Google Scholar]
- Osinska, M. Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels. J. Sol-Gel Sci. Technol. 2017, 81, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, D.; Goyal, M. Adsorptive removal of cobalt from aqueous solution by activated carbons. J. Ind. Pollut. Control. 2005, 21, 347–360. [Google Scholar]
- Gad, H.M.H.; Omar, H.A.; Aziz, M.; Hassan, M.R.; Khalil, M.H. Treatment of Rice Husk Ash to Improve Adsorption Capacity of Cobalt from Aqueous Solution. Asian J. Chem. 2016, 28, 385–394. [Google Scholar] [CrossRef]
- Lupea, M.; Bulgariu, L.; Macoveanu, M. Adsorption of Cobalt(II) from aqueous solution using marine green algae—Ulva lactuca sp. Bull. Polytech. Inst. Iasi 2012, 58, 41–47. [Google Scholar]
- Oliveira, R.C.; Hammer, P.; Guibal, E.; Taulemesse, J.M.; Garcia, J.R.O. Characterization of metal-biomass interactions in the lanthanum(III) biosorption on sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies. Chem. Eng. J. 2014, 239, 381–391. [Google Scholar] [CrossRef]
- Atieh, M.A.; Bakather, O.Y.; Al-Tawbini, B.; Bukhari, A.A.; Abuilaiwi, F.A.; Fettouhi, M.B. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2011, 2010, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Radovic, L.R.; Morino-Castilla, C.; Rivera-Utrilla, J. Chemistry and Physics of Carbon; Radovic, L.R., Ed.; Marcel Dekker: New York, NY, USA, 2000; Volume 27, 227p. [Google Scholar]
- Barton, S.S.; Evans, M.J.B.; Halliop, E.; Macdonald, J.A.F. Acidic and basic sites on the surface of porous carbon. Carbon 1997, 35, 1361–1366. [Google Scholar] [CrossRef]
- Hasan, S.; Iasir, A.; Ghosh, T.; Sen, G.B.; Prelas, M. Characterization and Adsorption Behavior of Strontium from Aqueous Solutions onto Chitosan-Fuller’s Earth Beads. Healthcare 2019, 7, 52–70. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Atun, G.; Guclu, K.; Tutem, E. Sorptive removal of Cesium-137 and Strontium-90 from water by conventional sorbents. J. Nucl. Sci. Technol. 1996, 33, 396–402. [Google Scholar] [CrossRef]
- Shahwan, T.; Erten, H.N. Characterization of Sr2+ uptake on natural minerals of kaolinite and magnesite using XRPD, SEM/EDS, XPS, and DRIFT. Radiochim. Acta 2005, 93, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Machida, M.; Amano, Y. Preparation and Modification of Activated Carbon Surface and Functions for Environments. In The Handbook of Environmental Chemistry; Springer Nature: Singapore, 2020; pp. 335–366. [Google Scholar]
Sample | U *, % | A **, % | Elemental Analysis, % | |||
---|---|---|---|---|---|---|
C | H | N | S | |||
CA-N | 13.11 ± 0.44 | 2.94 ± 0.23 | 92.52 | 1.24 | 0.07 | 0 |
CA-M | 8.65 ± 0.03 | 1.06 ± 0.04 | 92.00 | 1.38 | 0.26 | 0 |
CA-Nox-u | 14.76 ± 0.23 | 0.95 ± 0.06 | 88.43 | 1.42 | 0.85 | 0 |
CA-Mox-u | 15.49 ± 0.41 | 0.87 ± 0.12 | 81.81 | 1.80 | 1.05 | 0 |
CA-Mox | 5.26 ± 0.40 | 0.56 ± 0.11 | 81.73 | 1.60 | 0.69 | 0 |
Sample | SBET, m2/g | Vtotal, cm3/g | Vmicro, cm3/g | Vmeso, cm3/g |
---|---|---|---|---|
CA-M | 812 | 0.540 | 0.240 | 0.300 |
CA-N | 782 | 0.505 | 0.235 | 0.270 |
CA-Mox | 670 | 0.361 | 0.225 | 0.136 |
CA-Mox-u | 719 | 0.416 | 0.233 | 0.183 |
CA-Nox-u | 696 | 0.411 | 0.230 | 0.181 |
Sample | The Amount of Functional Groups, meq/g | Character of Functional Groups, meq/g | ||||||
---|---|---|---|---|---|---|---|---|
Titrant | Carboxylic | Phenolic | Basic | |||||
0.05 N NaHCO3 | 0.1 N Na2CO3 | 0.05 N NaOH | 0.05 N HCl | Strong Acidic | Weak Acidic | |||
CA-N | 0.02 ± 0.03 | 0.07 ± 0.02 | 0.29 ± 0.03 | 0.92 ± 0.02 | 0.02 | 0.05 | 0.22 | 0.92 |
CA-M | 0 | 0.35 ± 0.01 | 1.09 ± 0.01 | 0.98 ± 0.02 | 0 | 0.35 | 0.74 | 0.98 |
CA-Nox-u | 0.32 ± 0.05 | 0.54 ± 0.01 | 0.86 ± 0.03 | 0.60 ± 0.02 | 0.32 | 0.22 | 0.32 | 0.60 |
CA-Mox-u | 0.44 ± 0.04 | 0.77 ± 0.01 | 1.09 ± 0.05 | 0.55 ± 0.05 | 0.44 | 0.33 | 0.32 | 0.55 |
CA-Mox | 0.95 ± 0.01 | 1.78 ± 0.02 | 1.9 ± 0.01 | 0.45 ± 0.03 | 0.95 | 0.83 | 0.12 | 0.45 |
Sample | qe (exp), mmol/g | K2, g/mmol·min | qe(cal), mmol/g | R2 |
---|---|---|---|---|
CA-Mox | 0.085 | 0.914 | 0.087 | 0.999 |
CA-Mox-u | 0.056 | 0.769 | 0.058 | 0.999 |
CA-Nox-u | 0.041 | 1.327 | 0.043 | 0.999 |
Sample | qe (exp), mmol/g | K2, g/mmol·min | qe (cal), mmol/g | R2 |
---|---|---|---|---|
CA-M | 0.032 | 2.372 | 0.033 | 0.999 |
CA-N | 0.034 | 2.138 | 0.035 | 0.991 |
CA-Mox | 0.076 | 1.562 | 0.077 | 0.999 |
CA-Mox-u | 0.041 | 1.478 | 0.043 | 0.999 |
CA-Nox-u | 0.034 | 1.894 | 0.035 | 0.999 |
Isotherm Model | Parameters | CA-Mox | CA-Mox-u | CA-Nox-u |
---|---|---|---|---|
KL (L/mmol) | 8.096 | 3.768 | 7.357 | |
Langmuir | Q0 (mmol/g) | 0.075 | 0.069 | 0.040 |
R2 | 0.989 | 0.979 | 0.999 | |
RL | 6.1 × 10−6 ÷ 1.6 × 10−5 | 1.2 × 10−5 ÷ 1.6 × 10−5 | 6.1 × 10−6 ÷ 2.2 × 10−4 | |
Kf (mmol/g) | 0.059 | 0.057 | 0.031 | |
Freundlich | n | 3.88 | 2.08 | 4.12 |
R2 | 0.941 | 0.935 | 0.891 | |
Temkin–Pyzhev | KT (L/g) | 974.7 | 56.8 | 298.5 |
BT | 0.009 | 0.013 | 0.006 | |
R2 | 0.970 | 0.923 | 0.938 | |
Kads (mol2/kJ2) | 9.23 × 10−9 | 2.24 × 10−8 | 1.67 × 10−8 | |
Dubinin– | Q0 (mmol/g) | 0.067 | 0.051 | 0.037 |
Radushkevich | E (kJ/mol) | 7.36 | 4.725 | 5.472 |
R2 | 0.955 | 0.870 | 0.922 |
Isotherm Model | Parameters | CA-Mox | CA-Mox-u | CA-Nox-u |
---|---|---|---|---|
Langmuir | KL (L/mmol) | 4.798 | 6.081 | 6.578 |
Q0 (mmol/g) | 0.077 | 0.041 | 0.033 | |
R2 | 0.904 | 0.978 | 0.995 | |
RL | 0.15 ÷ 0.68 | 0.12 ÷ 0.62 | 0.11 ÷ 0.60 | |
Freundlich | Kf (mmol/g) | 0.175 | 0.047 | 0.034 |
n | 1.40 | 1.90 | 2.24 | |
R2 | 0.916 | 0.888 | 0.931 | |
Temkin–Pyzhev | KT (L/g) | 61.9 | 53.9 | 67.4 |
BT | 0.022 | 0.009 | 0.007 | |
R2 | 0.984 | 0.954 | 0.988 | |
Dubinin– Radushkevich | Kads (mol2/kJ2) | 2.7 × 10−8 | 2.8 × 10−8 | 2.3 × 10−8 |
Q0 (mmol/g) | 0.095 | 0.039 | 0.030 | |
E (kJ/mol) | 4.30 | 4.23 | 4.663 | |
R2 | 0.978 | 0.977 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceban, I.; Lupascu, T.; Mikhalovsky, S.; Nastas, R. Adsorption of Cobalt and Strontium Ions on Plant-Derived Activated Carbons: The Suggested Mechanisms. C 2023, 9, 71. https://doi.org/10.3390/c9030071
Ceban I, Lupascu T, Mikhalovsky S, Nastas R. Adsorption of Cobalt and Strontium Ions on Plant-Derived Activated Carbons: The Suggested Mechanisms. C. 2023; 9(3):71. https://doi.org/10.3390/c9030071
Chicago/Turabian StyleCeban (Ginsari), Irina, Tudor Lupascu, Sergey Mikhalovsky, and Raisa Nastas. 2023. "Adsorption of Cobalt and Strontium Ions on Plant-Derived Activated Carbons: The Suggested Mechanisms" C 9, no. 3: 71. https://doi.org/10.3390/c9030071
APA StyleCeban, I., Lupascu, T., Mikhalovsky, S., & Nastas, R. (2023). Adsorption of Cobalt and Strontium Ions on Plant-Derived Activated Carbons: The Suggested Mechanisms. C, 9(3), 71. https://doi.org/10.3390/c9030071