Identification and Combinatorial Overexpression of Key Genes for Enhancing ε-Poly-L-lysine Biosynthesis in Streptomyces albulus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Media
2.2. Plasmid and Strain Construction
2.3. Shake-Flask, Batch, and Fed-Batch Fermentation of S. albulus
2.4. Fermentation Parameters Analysis
2.5. RNA Sample Preparation and RT–PCR and RT–qPCR Analysis
2.6. Metabolic Network of ε-PL Synthesis and Construction of An Econometric Model
2.7. Statistical Analysis
3. Results
3.1. Fermentation Profiles of S. albulus WG-608 and S. albulus M-Z18
3.2. Comparison of the Metabolic Flux of S. albulus WG-608 and S. albulus M-Z18
3.2.1. Metabolic Flux Analysis of Glucose-6-phosphate Node
3.2.2. Metabolic Flux Analysis of Phosphoenolpyruvate Node
3.2.3. Metabolic Flux Analysis of Pyruvate Node
3.2.4. Metabolic Flux Analysis of Oxaloacetate Node
3.2.5. Metabolic Flux Analysis of Aspartate Node
3.2.6. Metabolic Flux Analysis of α-Ketoglutarate Node
3.3. Screening and Validation of Key Genes of the ε-PL Biosynthetic Pathway
3.3.1. Screening of Key Genes
3.3.2. Construction of Key Gene Overexpression Strains
3.3.3. Effect of Key Gene Overexpression on ε-PL Synthesis
3.4. Co-Expression of Effective Key Genes Further Enhances ε-PL Synthesis
3.4.1. Shake-Flask Fermentation of OE-ppc-pyc-pls Strains
3.4.2. Fed-Batch Fermentation of OE-ppc-pyc-pls Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takeuchi, K.; Ushimaru, K.; Kaneda, K.; Maruyama, C.; Yamanaka, K. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria. Commun. Biol. 2022, 5, 1132. [Google Scholar] [CrossRef]
- Hamano, Y.; Arai, T.; Ashiuchi, M.; Kino, K. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 2013, 30, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Wang, S.X.; Xiao, C.S.; Bian, Z.; Tao, Y.H. New chemosynthetic route to linear epsilon-poly-lysine. Chem. Sci. 2015, 6, 6385–6391. [Google Scholar]
- Xu, Z.X.; Xu, Z.; Feng, X.H.; Xu, D.L.; Liang, J.F.; Xu, H. Recent advances in the biotechnological production of microbial poly(epsilon-L-lysine) and understanding of its biosynthetic mechanism. Appl. Microbiol. Biotechnol. 2016, 100, 6619–6630. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, A. Improved microbial biosynthesis strategies and multifarious applications of the natural biopolymer epsilon-poly-L-lysine. Process Biochem. 2014, 49, 496–505. [Google Scholar] [CrossRef]
- Nishikawa, M.; Ogawa, K. Distribution of microbes producing antimicrobial ε-poly-L-lysine polymers in soil microflora determined by a novel method. Appl. Environ. Microb. 2002, 68, 3575–3581. [Google Scholar] [CrossRef]
- Ouyang, J.; Xu, H.; Li, S.; Zhu, H.Y.; Chen, W.W.; Zhou, J.; Wu, Q.; Xu, L.; Ouyang, P.K. Production of ε-poly-L-lysine by newly isolated Kitasatospora sp. PL6-3. Biotechnol. J. 2016, 1, 1459–1463. [Google Scholar] [CrossRef]
- Purev, E.; Kondo, T.; Takemoto, D.; Niones, J.T.; Ojika, M. Identification of ε-poly-L-lysine as an antimicrobial product from an Epichlo endophyte and isolation of fungal ε-PL synthetase gene. Molecules 2020, 25, 1032. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dineshkumar, R.; Dhanarajan, G.; Sen, R.; Mishra, S. Improvement of ε-polylysine production by marine bacterium Bacillus licheniformis using artificial neural network modeling and particle swarm optimization technique. Biochem. Eng. J. 2017, 26, 8–15. [Google Scholar] [CrossRef]
- Jiang, X.L.; Radko, Y.; Gren, T.; Palazzotto, E.; Jorgensen, T.S.; Cheng, T.; Xian, M.; Weber, T.; Lee, S.Y. Distribution of epsilon-poly-L-lysine synthetases in coryneform bacteria isolated from cheese and human skin. Appl. Environ. Microb. 2021, 87, e01841-20. [Google Scholar] [CrossRef]
- Shima, S.J. Heiichi, Poly-L-lysine produced by Streptomyces. Part II. taxonomy and fermentation studies. Agric. Biol Chem. 1981, 45, 2497–2502. [Google Scholar] [CrossRef]
- Xiang, J.H.; Yang, Y.; Dabbour, M.; Mintah, B.K.; Zhang, Z.L.; Dai, C.H.; He, R.H.; Huang, G.P.; Ma, H.L. Metabolomic and genomic profiles of Streptomyces albulus with a higher ε-polylysine production through ARTP mutagenesis. Biochem. Eng. J. 2020, 162, 107720. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.S.; Wu, G.Y.; Zeng, X.; Tang, L. Improved epsilon-poly-L-lysine production of Streptomyces sp FEEL-1 by atmospheric and room temperature plasma mutagenesis and streptomycin resistance screening. Ann. Microbiol. 2015, 65, 2009–2017. [Google Scholar] [CrossRef]
- Hiraki, J.; Hatakeyama, M.; Morita, H.; Izumi, Y. Improved epsilon-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu-Kogaku Kaishi. 1998, 76, 487–493. [Google Scholar]
- Li, S.; Li, F.; Chen, X.S.; Wang, L.; Xu, J.; Tang, L.; Mao, Z.G. Genome shuffling enhanced epsilon-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl. Biochem. Biotech. 2012, 166, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.P.; Ren, X.D.; Wang, L.; Chen, X.S.; Mao, Z.G.; Tang, L. Enhancement of epsilon-poly-lysine production in epsilon-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioproc. Biosyst. Eng. 2015, 38, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Hamano, Y.; Shimizu, T.; Onji, Y.; Hiraki, J.; Takagi, H. epsilon-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl. Microbiol. Biot. 2007, 76, 873–882. [Google Scholar] [CrossRef]
- Xu, Z.X.; Cao, C.H.; Sun, Z.Z.; Li, S.; Xu, Z.; Feng, X.H.; Xu, H. Construction of a genetic system for Streptomyces albulus PD-1 and Improving poly(epsilon-L-lysine) production through expression of Vitreoscilla hemoglobin. J. Microbiol. Biotechn. 2015, 25, 1819–1826. [Google Scholar] [CrossRef]
- Papoutsakis, E.T. Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 2000, 67, 813–826. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Wang, X.M.; Yang, C.; Geng, W.T.; Feng, J.; Wang, Y.Y.; Wang, S.F.; Song, C.J. Effects of chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) and s-adenosylmethionine synthetase gene (metK) on epsilon-poly-L-lysine synthesis in Streptomyces albulus NK660. Appl. Biochem. Biotech. 2016, 178, 1445–1457. [Google Scholar] [CrossRef]
- Kahar, P.; Iwata, T.; Hiraki, J.; Park, E.Y.; Okabe, M. Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 2001, 91, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.J.; Tian, F.W.; Fan, D.M.; Zhao, J.X.; Chen, W.; Zhang, H. Study on mutation breeding of high ε-poly-L-lysine-producing Streptomyces albulus. Sci. Technol. Food. Ind. 2008, 29, 99–104. [Google Scholar]
- Wang, L.; Chen, X.S.; Wu, G.Y.; Zeng, X.; Ren, X.D.; Li, S.; Tang, L.; Mao, Z.G. Genome shuffling and gentamicin-resistance to improve epsilon-poly-L-lysine productivity of Streptomyces albulus W-156. Appl. Biochem. Biotech. 2016, 180, 1601–1617. [Google Scholar] [CrossRef]
- Pan, L.; Liu, M.M.; Liu, Y.J.; Mao, Z.G. Efficient production of epsilon-poly-L-lysine from glucose by two-stage fermentation using pH shock strategy. Process. Biochem. 2017, 63, 8–15. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Zhao, J.J.; Chen, X.S.; Mao, Z.G. Efficiently activated epsilon-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Microbiologyopen 2019, 8, e00728. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Deng, Y.; Wu, M.P.; Zhang, J.H.; Zhang, H.J.; Mao, Z.G.; Chen, X.S. Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process. Biochem. 2022, 18, 393–403. [Google Scholar] [CrossRef]
- Xu, D.L.; Yao, H.Q.; Cao, C.H.; Xu, Z.X.; Li, S.; Xu, Z.; Zhou, J.H.; Feng, X.H.; Xu, H. Enhancement of epsilon-poly-L-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioproc. Biosyst. Eng. 2018, 41, 1337–1345. [Google Scholar] [CrossRef]
- Xu, D.L.; Wang, R.; Xu, Z.X.; Xu, Z.; Li, S.; Wang, M.X.; Feng, X.H.; Xu, H. Discovery of a short-chain epsilon-poly-L-lysine and its highly efficient production via synthetase swap strategy. J. Agr. Food. Chem. 2019, 67, 1453–1462. [Google Scholar] [CrossRef]
- Yamanaka, K.; Hamano, Y.; Oikawa, T. Enhancement of metabolic flux toward epsilon-poly-L-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus. J. Biosci. Bioeng. 2020, 129, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhu, D.J.; Kai, L.; Wang, L.; Zhang, H.J.; Zhang, J.H.; Chen, X.S. Engineering Streptomyces albulus to enhance ε-poly-L-lysine production by introducing a polyphosphate kinase-mediated ATP regeneration system. Microb. Cell. Fact. 2023, 22, 51. [Google Scholar] [CrossRef]
- Antoniewicz, M.R. Methods and advances in metabolic flux analysis: A mini-review. J. Ind. Microbiol. Biot. 2015, 42, 317–325. [Google Scholar]
- Gebreselassie, N.A.; Antoniewicz, M.R. 13C-metabolic flux analysis of co-cultures: A novel approach. Metab. Eng. 2015, 31, 132–139. [Google Scholar] [PubMed]
- Zhuo, Z.S.; Zhang, K.; Song, P.; Hunag, B.Q.; Hunag, H. Metabolic flux analysis of Escherichia coli producing lipase. Food. Ferment. Ind. 2019, 45, 14–21. [Google Scholar]
- Cheah, Y.E.; Xu, Y.; Sacco, S.A.; Babele, P.K.; Zheng, A.O.; Johnson, C.H.; Young, J.D. Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC. Metab.Eng. 2020, 60, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Reinefeld, J.; Stellmacher, R.; Schäfer, R.; Lange, A.; Meyer, H.; Lalk, M.; Zelder, O.; von Abendroth, G.; Schröder, H. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol. Bioeng. 2013, 110, 3013–3023. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Y.; Chen, X.S.; Wang, L.; Mao, Z.G. Screening of high-yield ε-poly-L-lysine producing strains through ribosome engineering. Microbiol. China 2016, 43, 2744–2751. [Google Scholar]
- Wilkinson, C.J.; Hughes-Thomas, Z.A.; Martin, C.J.; Böhm, I.; Mironenko, T.; Deacon, M.; Wheatcroft, M.; Wirtz, G.; Staunton, J.; Leadlay, P.F. Increasing the efficiency of heterologous promoters in Actinomycetes. J. Mol. Microb. Biotech. 2002, 4, 417–426. [Google Scholar]
- Hu, X.; Cui, M.; Wang, X. Improvement of lycopene biosynthesis in waaC and waaF mutants of Escherichia coli by integrant expression of crtEBI gene and deletion of aceE and gdhA. SMAB 2022, 3, 739–749. [Google Scholar] [CrossRef]
- Lv, Q.L.; Hu, M.K.; Tian, L.Z.; Liu, F.; Wang, Q.; Xu, M.J.; Rao, Z.M. Enhancing L-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy. Bioresour. Technol. 2021, 341, 125799. [Google Scholar] [CrossRef]
- Itzhaki, R.F. Colorimetric method for estimating polylysine and polyarginine. Anal. Biochem. 1972, 50, 569–574. [Google Scholar] [CrossRef]
- Cunniff, P.; Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995; Volume 2, p. 382. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.T.; Yang, C.; Gu, Y.Y.; Liu, R.H.; Guo, W.B.; Wang, X.; Song, C.J.; Wang, S.F. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Microb. Biotechnol. 2014, 7, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Daae, E.B.; Ison, A.P. Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans. Metab. Eng. 1999, 1, 153–165. [Google Scholar] [CrossRef]
- Shi, Q.S.; Feng, F.P. The isolation of marine fungi. J. Yunnan. Univ. Nat. Sci. 2004, 26, 82–86. [Google Scholar]
- Ma, H.W.; Zhao, X.M.; Tang, Y.J. Analysis of data on xanthan fermentation in stationary phase using black box and metabolic network models. Chin. J. Chem. Eng. 1999, 7, 321–325. [Google Scholar]
- Yang, Z.; Rinzema, A.; Bonarius, H. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances–quantifying the metabolic flows within the primary pathways and medium development. Enzyme. Microb. Technol. 1998, 23, 216–226. [Google Scholar]
- Yoshida, T.; Nagasawa, T. ε-Poly-L-lysine: Microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 2003, 62, 21–26. [Google Scholar]
- Lim, F.; Morris, C.P.; Occhiodoro, F. Sequence and domain structure of yeast pyruvate carboxylase. J. Biol. Chem. 1988, 263, 11493–11497. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Wu, M.P.; Zhang, J.H.; Zhang, H.J.; Mao, Z.G.; Chen, X.S. Integrative transcriptome and proteome revealed high-yielding mechanisms of epsilon-poly-L-lysine by Streptomyces albulus. Front. Microbiol. 2023, 14, 1123050. [Google Scholar] [CrossRef]
- MacLean, A.; Legendre, F.; Appanna, V.D. The tricarboxylic acid (TCA) cycle: A malleable metabolic network to counter cellular stress. Crit. Rev. Biochem. Mol. Biol. 2023, 43, 81–97. [Google Scholar] [CrossRef]
- Kito, M.; Takimoto, R.; Yoshida, T.; Nagasawa, T. Purification and characterization of an ε-poly-L-lysine-degrading enzyme from an ε-poly-L-lysine-producing strain of Streptomyces albulus. SMAB 2002, 178, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Seide, S.; Arnold, L.; Wetzels, S.; Bregu, M.; Gätgens, J.; Pohl, M. From enzyme to preparative cascade reactions with immobilized enzymes: Tuning Fe(II)α-ketoglutarate-dependent lysine hydroxylases for application in biotransformations. Catalysts 2022, 12, 354. [Google Scholar] [CrossRef]
- Yamanaka, K.; Kito, N.; Imokawa, Y.; Maruyama, C.; Utagawa, T.; Hamano, Y. Mechanism of epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-L-lysine-degrading enzyme. Appl. Environ. Microbiol. 2010, 76, 5669–5675. [Google Scholar] [CrossRef]
- Xu, J.Z.; Wu, Z.H.; Gao, S.J.; Zhang, W.G. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum. Microb. Cell. Fact. 2018, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Yokota, A.; Sawada, K.; Wada, M.; Yokota, A.; Ikeda, M. Boosting anaplerotic reactions by pyruvate kinase gene deletion and phosphoenolpyruvate carboxylase desensitization for glutamic acid and lysine production in Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 2017, 159, 181–198. [Google Scholar]
- Nærdal, I.; Netzer, R.; Ellingsen, T.E.; Brautaset, T. Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus. Appl. Environ. Microb. 2011, 77, 6020–6026. [Google Scholar] [CrossRef]
- Becker, J.; Klopprogge, C.; Herold, A.; Zelder, O.; Bolten, C.J.; Wittmann, C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum—Over expression and modification of G6P dehydrogenase. J. Biotechnol. 2007, 132, 99–109. [Google Scholar] [CrossRef]
- Chen, Z.; Bommareddy, R.R.; Frank, D.; Rappert, S.; Zeng, A.P. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microb. 2014, 80, 1388–1393. [Google Scholar] [CrossRef]
- Arenz, A.; Stojicic, N.; Lau, P.; Hellweg, C.E.; Baumstark-Khan, C. Suitability of commonly used housekeeping genes in gene expression studies for space radiation research. Adv. Space. Res. 2007, 39, 1050–1055. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.H.; Yuan, J.; Jiang, L.Y.; Jiang, X.L.; Yang, B.; Zhao, G.; Liu, B.; Huang, D. Generation of Streptomyces hygroscopicus cell factories with enhanced ascomycin production by combined elicitation and pathway-engineering strategies. Biotechnol. Bioeng. 2019, 116, 3382–3395. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.B.; Ma, Z.; Xu, X.H.; Bechthold, A.; Bian, Y.L.; Shentu, X.P.; Yu, X.P. Engineering Streptomyces diastatochromogenes 1628 to increase the production of toyocamycin. Eng. Life. Sci. 2016, 15, 779–787. [Google Scholar] [CrossRef]
Strains | Breeding Strategies | Fermentation Strategies | Production (g/L) | Reference |
---|---|---|---|---|
Traditional Mutagenesis | ||||
S. albulus 11011A | AEC, Gly resistance screening | Constant pH 4.0 | 20.0 | [14] |
S. albulus S410 | AEC, Gly resistance screening | Two-stage pH control | 48.3 | [21] |
S. albulus SAR14 | ARTP mutagenesis | Shake flask fermentation | 1.1 | [12] |
S. albulus UN2-71 | Nitrite, UV, AEC compound treatment | Shake flask fermentation | 1.6 | [22] |
S. albulus F3-4 | Genome shuffling | Constant pH 3.8 | 13.5 | [15] |
S. albulus FEEL-1 | Ribosome engineering | Constant pH 4.0 | 24.5 | [13] |
S. albulus F4-22 | Genome shuffling | Constant pH 4.0 | 40.0 | [16] |
S. albulus AG3-28 | Gentamicin screening | Constant pH 3.8 | 56.5 | [23] |
S. albulus M-Z18 | UV and NTG mutagenesis | pH shock | 32.2 | [24] |
S. albulus R6 | ARTP mutagenesis, antibiotic screening | pH shock | 70.3 | [25] |
S. albulus GS114 | Streptomycin resistance screening | Dynamic pH control | 60.2 | [26] |
Metabolic engineering modifications | ||||
S. albulus CR1-ask | Ask gene targeted mutation | Constant pH 4.0 | 15.0 | [17] |
S. albulus PD-2 | Overexpression of the vgb | Two-stage pH control | 34.2 | [18] |
S. albulus PD-1 | Overexpression of the amtB | Two-stage pH control | 35.7 | [27] |
S. albulus PD-5 | Knockout of plsI overexpression of plsII | Two-stage pH control | 23.6 | [28] |
S. albulus NBRC14147 | Overexpression of ttm and nys | Two-stage pH control | 3.5 | [29] |
S. albulus Q-PL2 | Overexpression of pls | Constant pH 4.0 | 20.1 | [4] |
S. albulus PL05 | Overexpression of pap and ppk2Bcg | Constant pH 4.0 | 59.25 | [30] |
Strain or Plasmid | Description | Source or Reference |
---|---|---|
Strains | ||
S.albulus | ||
M-Z18 | Parent strain, ε-poly-L-lysine low-production strain | [24] |
WG-608 | Parent strain, ε-poly-L-lysine high-production strain | [36] |
OE-ppc | WG608 carrying pIB139-ppc | This study |
OE-zwf | WG608 carrying pIB139-zwf | This study |
OE-dapA | WG608 carrying pIB139-dapA | This study |
OE-lysA | WG608 carrying pIB139-lysA | This study |
OE-pyc | WG608 carrying pIB139-pyc | This study |
OE-pls | WG608 carrying pIB139-pls | This study |
Control-pIB139 | WG608 carrying pIB139 | This study |
OE-ppc-pyc-pls | WG608 carrying pIB139-ppc-pyc-pls | This study |
E. coli | ||
DH5α | General cloning host | Invitrogen |
ET12567 | Donor strain for conjugation between E. coli and Streptomyces | Invitrogen |
Plasmids | ||
pIB39 | Integrative vector based on ϕC31 integrase | [37] |
pIB139-ppc | ppc cloned in pIB139 | This study |
pIB139-zwf | zwf cloned in pIB139 | This study |
pIB139-dapA | dapA cloned in pIB139 | This study |
pIB139-lysA | lysA cloned in pIB139 | This study |
pIB139-pyc | pyc cloned in pIB139 | This study |
pIB139-pls | pls cloned in pIB139 | This study |
pIB139-ppc-pyc-pls | ppc, pls and pyc cloned in pIB139 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, H.; Zhang, C.; Zhu, D.; Wang, L.; Zhang, J.; Chen, X. Identification and Combinatorial Overexpression of Key Genes for Enhancing ε-Poly-L-lysine Biosynthesis in Streptomyces albulus. Fermentation 2024, 10, 65. https://doi.org/10.3390/fermentation10010065
Zhang H, Yang H, Zhang C, Zhu D, Wang L, Zhang J, Chen X. Identification and Combinatorial Overexpression of Key Genes for Enhancing ε-Poly-L-lysine Biosynthesis in Streptomyces albulus. Fermentation. 2024; 10(1):65. https://doi.org/10.3390/fermentation10010065
Chicago/Turabian StyleZhang, Hongjian, Hao Yang, Chongyang Zhang, Daojun Zhu, Liang Wang, Jianhua Zhang, and Xusheng Chen. 2024. "Identification and Combinatorial Overexpression of Key Genes for Enhancing ε-Poly-L-lysine Biosynthesis in Streptomyces albulus" Fermentation 10, no. 1: 65. https://doi.org/10.3390/fermentation10010065
APA StyleZhang, H., Yang, H., Zhang, C., Zhu, D., Wang, L., Zhang, J., & Chen, X. (2024). Identification and Combinatorial Overexpression of Key Genes for Enhancing ε-Poly-L-lysine Biosynthesis in Streptomyces albulus. Fermentation, 10(1), 65. https://doi.org/10.3390/fermentation10010065