Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications
Abstract
:1. Introduction
1.1. B. clausii Physiological Characteristics
1.2. B. clausii Modes of Action
1.2.1. Antibiotic Resistance
1.2.2. Gut Barrier and Immunity Function
1.2.3. Antimicrobial Behavior and Immuno-Regulatory Properties
1.2.4. Bacillus spp. Fermentation Ability
2. Compositional Quality and Safety Assessment of B. clausii-Based Products
3. Bacillus spp. Application in the Food Industry
3.1. Poultry Industry and B. clausii
3.2. Pig Industry and B. clausii
3.3. Fermented Products and B. clausii
3.4. Confectionary Products and B. clausii
3.5. Functional Foods with Antioxidant-Probiotic B. clausii Properties
4. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.B.; Almada, C.N.; Almada, C.N.; Martinez, R.C.; Pereira, E.P.; Balthazar, C.F.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. Behavior of different Bacillus strains with claimed probiotic properties throughout processed cheese (“requeijão cremoso”) manufacturing and storage. Int. J. Food Microbiol. 2019, 307, 108288. [Google Scholar] [CrossRef] [PubMed]
- Elshaghabee, F.M.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [PubMed]
- Patrone, V.; Molinari, P.; Morelli, L. Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int. J. Food Microbiol. 2016, 237, 92–97. [Google Scholar] [CrossRef]
- Hoa, N.T.; Baccigalupi, L.; Huxham, A.; Smertenko, A.; Van, P.H.; Ammendola, S.; Ricca, E.; Cutting, S.M. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 2000, 66, 5241–5247. [Google Scholar] [CrossRef]
- Sanders, M.E.; Morelli, L.; Tompkins, T.A. Sporeformers as human probiotics: Bacillus, Sporolacto Bacillus, and Brevi Bacillus. Compr. Rev. Food Sci. Food Saf. 2003, 2, 101–110. [Google Scholar] [CrossRef]
- Hoyles, L.; Honda, H.; Logan, N.A.; Halket, G.; La Ragione, R.M.; McCartney, A.L. Recognition of greater diversity of Bacillus species and related bacteria in human feces. Res. Microbiol. 2012, 163, 3–13. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Scaldaferri, F.; Franceschi, F.; Gasbarrini, A. Bacillus clausii and gut homeostasis: State of the art and future perspectives. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 943–948. [Google Scholar] [CrossRef]
- Senesi, S.; Celandroni, F.; Tavanti, A.; Ghelardi, E. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microbiol. 2001, 67, 834–839. [Google Scholar] [CrossRef]
- Celandroni, F.; Vecchione, A.; Cara, A.; Mazzantini, D.; Lupetti, A.; Ghelardi, E. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS ONE 2019, 14, e0217021. [Google Scholar] [CrossRef]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Rizzatti, G.; Plomer, M.; Lopetuso, L.; Scaldaferri, F.; Franceschi, F.; Cammarota, G.; Gasbarrini, A. Bacillus clausii for the treatment of acute diarrhea in children: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 1074. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. CMLS 2002, 59, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, J.; Ornelis, V.F.; Madder, A.; Rajkovic, A. Bacillus cereus food intoxication and toxic infection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3719–3761. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.A.; Duc, L.H.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.; Fritze, D.; Priest, F.G. Phenetic diversity of alkaliphilic Bacillus strains: Proposal for nine new species. Microbiology 1995, 141, 1745–1761. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Gueye, S.A.; Lupetti, A.; Senesi, S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J. Appl. Microbiol. 2015, 119, 552–559. [Google Scholar] [CrossRef]
- Abbrescia, A.; Palese, L.L.; Papa, S.; Gaballo, A.; Alifano, P.M.; Sardanelli, A. Antibiotic sensitivity of Bacillus clausii strains in commercial preparation. Clin. Immunol. Endocr. Metab. Drugs (Discontin.) 2014, 1, 102–110. [Google Scholar] [CrossRef]
- Guérout-Fleury, A.M.; Shazand, K.; Frandsen, N.; Stragier, P. Antibiotic-resistance cassettes for Bacillus subtilis. Gene 1995, 167, 335–336. [Google Scholar] [CrossRef]
- Ghelardi, E.; Abreu y Abreu, A.T.; Marzet, C.B.; Álvarez Calatayud, G.; Perez, M., III; Moschione Castro, A.P. Current progress and future perspectives on the use of Bacillus clausii. Microorganisms 2022, 10, 1246. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.E.; Khalil, I.A.; Blacker, B.F.; Biehl, M.H.; Albertson, S.B.; Zimsen, S.R.; Rao, P.C.; Abate, D.; Ahmadi, A.; brahim Ahmed, M.L.C.; et al. Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: An analysis of the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2020, 20, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Cutting, S.M.; Ricca, E. Bacterial spore-formers: Friends and foes. FEMS Microbiol. Lett. 2014, 358, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, M.T.; Magazù, S. An FT-IR Based Investigation of Trehalose Mediated Thermal Stabilisation of Bacillus clausii. Curr. Nutr. Food Sci. 2021, 17, 566–571. [Google Scholar] [CrossRef]
- De Castro, J.A.; Kesavelu, D.; Lahiri, K.R.; Chaijitraruch, N.; Chongsrisawat, V.; Jog, P.P.; Liaw, Y.H.; Nguyen, G.K.; Nguyen, T.V.H.; Pai, U.A.; et al. Recommendations for the adjuvant use of the poly-antibiotic–resistant probiotic Bacillus clausii (O/C, SIN, N/R, T) in acute, chronic, and antibiotic-associated diarrhea in children: Consensus from Asian experts. Trop. Dis. Travel Med. Vaccines 2020, 6, 1–15. [Google Scholar] [CrossRef]
- Cenci, G.; Trotta, F.; Caldini, G. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J. Appl. Microbiol. 2006, 101, 1208–1215. [Google Scholar] [CrossRef]
- Fakhry, S.; Sorrentini, I.; Ricca, E.; De Felice, M.; Baccigalupi, L. Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J. Appl. Microbiol. 2008, 105, 2178–2186. [Google Scholar] [CrossRef]
- Duc, L.H.; Hong, H.A.; Barbosa, T.M.; Henriques, A.O.; Cutting, S.M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 2004, 70, 2161–2171. [Google Scholar] [CrossRef]
- Ahire, J.J.; Kashikar, M.S.; Madempudi, R.S. Survival and germination of Bacillus clausii UBBC07 spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Front. Microbiol. 2020, 11, 1010. [Google Scholar] [CrossRef]
- Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 2002, 347, 911–920. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.; Totino, V.; Cacciotti, F.; Iebba, V.; Neroni, B.; Bonfiglio, G.; Trancassini, M.; Passariello, C.; Pantanella, F.; Schippa, S. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Robinson 2018, 15, 1679. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products–A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Crittenden, R.; Laitila, A.; Forssell, P.; Matto, J.; Saarela, M.; Mattila-Sandholm, T.; Myllarinen, P. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl. Environ. Microbiol. 2001, 67, 3469–3475. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Acosta-Rodríguez-Bueno, C.P.; Abreu y Abreu, A.T.; Guarner, F.; Guno, M.J.V.; Pehlivanoğlu, E.; Perez, M., III. Bacillus clausii for gastrointestinal disorders: A narrative literature review. Adv. Ther. 2022, 39, 4854–4874. [Google Scholar] [CrossRef]
- Mikawlrawng, K. Aspergillus in biomedical research. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 229–242. [Google Scholar] [CrossRef]
- Nista, E.C.; Candelli, M.; Cremonini, F.; Cazzato, I.A.; Zocco, M.A.; Franceschi, F.; Cammarota, G.; Gasbarrini, G.; Gasbarrini, A. Bacillus clausii therapy to reduce side-effects of anti-Helicobacter pylori treatment: Randomized, double-blind, placebo-controlled trial. Aliment. Pharmacol. Ther. 2004, 20, 1181–1188. [Google Scholar] [CrossRef]
- Bozdogan, B.; Galopin, S.; Gerbaud, G.; Courvalin, P.; Leclercq, R. Chromosomal aadD2 encodes an aminoglycoside nucleotidyltransferase in Bacillus clausii. Antimicrob. Agents Chemother. 2003, 47, 1343–1346. [Google Scholar] [CrossRef]
- Bozdogan, B.; Galopin, S.; Leclercq, R. Characterization of a new erm-related macrolide resistance gene present in probiotic strains of Bacillus clausii. Appl. Environ. Microbiol. 2004, 70, 280–284. [Google Scholar] [CrossRef]
- Bahaddad, S.A.; Almalki, M.H.; Alghamdi, O.A.; Sohrab, S.S.; Yasir, M.; Azhar, E.I.; Chouayekh, H. Bacillus Species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob. Proteins 2023, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, S.; Erginkaya, Z.; Turhan, E.Ü.; Konuray, G. Assessment of the Risk of Probiotics in Terms of the Food Safety and Human Health. In Health and Safety Aspects of Food Processing Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 419–443. [Google Scholar] [CrossRef]
- Girlich, D.; Leclercq, R.; Naas, T.; Nordmann, P. Molecular and biochemical characterization of the chromosome-encoded class A β-lactamase BCL-1 from Bacillus clausii. Antimicrob. Agents Chemother. 2007, 51, 4009–4014. [Google Scholar] [CrossRef] [PubMed]
- Galopin, S.; Cattoir, V.; Leclercq, R. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol. Lett. 2009, 296, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.X.; Xu, Q.M.; Yu, S.C.; Cheng, J.S.; Yuan, Y.J. Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactants. Sci. Total Environ. 2020, 710, 136329. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.X.; Jiang, J.L.; Qiao, B.; Liu, H.; Cheng, J.S.; Yuan, Y.J. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways. Sci. Total Environ. 2019, 651, 271–280. [Google Scholar] [CrossRef]
- Fredua-Agyeman, M.; Parab, S.; Gaisford, S. Evaluation of commercial probiotic products. Br. J. Pharm. 2016, 1, 84–89. [Google Scholar] [CrossRef]
- Vecchione, A.; Celandroni, F.; Mazzantini, D.; Senesi, S.; Lupetti, A.; Ghelardi, E. Compositional quality and potential gastrointestinal behavior of probiotic products commercialized in Italy. Front. Med. 2018, 5, 59. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019, 19, 1–15. [Google Scholar] [CrossRef]
- Kapse, N.G.; Engineer, A.S.; Gowdaman, V.; Wagh, S.; Dhakephalkar, P.K. Genome profiling for health promoting and disease preventing traits unraveled probiotic potential of Bacillus clausii B106. Microbiol. Biotechnol. Lett. 2018, 46, 334–345. [Google Scholar] [CrossRef]
- Salvetti, S.; Celandroni, F.; Ghelardi, E.M.I.L.I.A.; Baggiani, A.N.G.E.L.O.; Senesi, S.O.N.I.A. Rapid determination of vitamin B2 secretion by bacteria growing on solid media. J. Appl. Microbiol. 2003, 95, 1255–1260. [Google Scholar] [CrossRef]
- Upadrasta, A.; Pitta, S.; Madempudi, R.S. Draft genome sequence of Bacillus clausii UBBC07, a spore-forming probiotic strain. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Mori, K.; Suyama, A.; Huang, Y.; Tashiro, K.; Kuhara, S.; Takegawa, K. Draft Genome Sequence of Bacillus clausii AKU0647, a Strain That Produces Endo-β-N-Acetylglucosaminidase A. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, S.; Tao, H.; Grillo, A.; Franceschi, F.; Elia, C.; Zocco, M.A.; Gasbarrini, G.; Sepulveda, A.R.; Gasbarrini, A. Bacillus clausii effect on gene expression pattern in small bowel mucosa using DNA microarray analysis. Eur. J. Gastroenterol. Hepatol. 2005, 17, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019, 178, 795–806. [Google Scholar] [CrossRef]
- Duysburgh, C.; Van den Abbeele, P.; Krishnan, K.; Bayne, T.F.; Marzorati, M. A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro. Int. J. Pharm. X 2019, 1, 100021. [Google Scholar] [CrossRef]
- Patel, C.; Patel, P.; Acharya, S. Therapeutic prospective of a spore-forming probiotic—Bacillus clausii UBBC07 against acetaminophen-induced uremia in rats. Probiotics Antimicrob. Proteins 2020, 12, 253–258. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Omar, N.B.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef]
- Alatriste, P.V.M.; Arronte, R.U.; Espinosa, C.O.G.; Cuevas, M.D.L.Á.E. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr. Hosp. 2014, 29, 582–590. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Ramírez-Medina, H.K.; Rangel-Peraza, J.G.; Pineda-Hidalgo, K.V.; Iribe-Arellano, P. Use of whey as a culture medium for Bacillus clausii for the production of protein hydrolysates with antimicrobial and antioxidant activity. Food Sci. Technol. Int. 2018, 24, 35–42. [Google Scholar] [CrossRef]
- Bouhss, A.; Al-Dabbagh, B.; Vincent, M.; Odaert, B.; Aumont-Nicaise, M.; Bressolier, P.; Desmadril, M.; Mengin-Lecreulx, D.; Urdaci, M.C.; Gallay, J. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall. Biophys. J. 2009, 97, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Ripert, G.; Racedo, S.M.; Elie, A.M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 2016, 60, 3445–3454. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. Pathophysiology of asthma: What has our current understanding taught us about new therapeutic approaches? J. Allergy Clin. Immunol. 2011, 128, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Jung, A.Y.; Chang, C.S.; Kim, Y.H. Bacillus clausii, a Foreshore-Derived Probiotic, Attenuates Allergic Airway Inflammation Through Downregulation of Hypoxia Signaling. J. Rhinol. 2020, 27, 108–116. [Google Scholar] [CrossRef]
- Pradhan, B.; Guha, D.; Ray, P.; Das, D.; Aich, P. Comparative analysis of the effects of two probiotic bacterial strains on metabolism and innate immunity in the RAW 264.7 murine macrophage cell line. Probiotics Antimicrob. Proteins 2016, 8, 73–84. [Google Scholar] [CrossRef]
- Villéger, R.; Saad, N.; Grenier, K.; Falourd, X.; Foucat, L.; Urdaci, M.C.; Bressollier, P.; Ouk, T.S. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: Involvement of D-alanine in their biological activity. Antonie Van Leeuwenhoek 2014, 106, 693–706. [Google Scholar] [CrossRef]
- Cruz, B.C.; Sarandy, M.M.; Messias, A.C.; Gonçalves, R.V.; Ferreira, C.L.; Peluzio, M.C. Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review. Nutr. Rev. 2020, 78, 667–687. [Google Scholar] [CrossRef]
- de Castro, J.A.A.; Guno, M.J.V.R.; Perez, M.O. Bacillus clausii as adjunctive treatment for acute community-acquired diarrhea among Filipino children: A large-scale, multicenter, open-label study (CODDLE). Trop. Dis. Travel Med. Vaccines 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Kamiya, S.; Yonezawa, H.; Osaki, T. Role of probiotics in eradication therapy for Helicobacter pylori infection. Helicobacter pylori Hum. Dis. Adv. Microbiol. Infect. Dis. Public Health 2019, 11, 243–255. [Google Scholar] [CrossRef]
- Hungin, A.P.S.; Mulligan, C.; Pot, B.; Whorwell, P.; Agréus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.M.; Rubin, G.; et al. Systematic review: Probiotics in the management of lower gastrointestinal symptoms in clinical practice—An evidence-based international guide. Aliment. Pharmacol. Ther. 2013, 38, 864–886. [Google Scholar] [CrossRef]
- Plomer, M., III; Perez, M.; Greifenberg, D.M. Effect of Bacillus clausii capsules in reducing adverse effects associated with Helicobacter pylori eradication therapy: A randomized, double-blind, controlled trial. Infect. Dis. Ther. 2020, 9, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Johnson, J.L.; Kale-Pradhan, P.B. Treating bugs with bugs: The role of probiotics as adjunctive therapy for Helicobacter pylori. Ann. Pharmacother. 2011, 45, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Guo, W.; Liu, C. Isolation, identification and characterization of novel Bacillus subtilis. J. Vet. Med. Sci. 2018, 80, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yin, Y.; Wen, J. Fermentation Optimization and Metabolomic Analysis of a Bacillus subtilis Co-Culture System for Fengycin Production from Mixed Sugars. Biochem. Eng. J. 2024, 209, 109406. [Google Scholar] [CrossRef]
- Devos, R.J.B.; Bender, L.E.; Lopes, S.T.; Cavanhi, V.A.F.; Colvero, G.L.; Rempel, A.; Harakava, R.; Alves, S.L., Jr.; Colla, L.M. Multienzyme production by Bacillus velezensis strains isolated from fruit residues in submerged fermentation using triticale and sugarcane bagasse in the cultivation media. Process Biochem. 2024, 141, 90–101. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Wei, S.; Fu, L.; Wang, Y.; Jin, M. Bioconversion of soybean meal into gut microbiota-targeting polysaccharides via fermentation by Bacillus subtilis. J. Clean. Prod. 2024, 464, 142787. [Google Scholar] [CrossRef]
- Kabir, M.E.; Borah, A.; Barman, H.; Sharmah, B.; Afzal, N.U.; Phukan, T.; Kalita, J.; Manna, P. Screening and Optimization of α-Glucosidase Inhibitor Production by Potent Strain of Bacillus subtilis Isolated from Peruyaan, Fermented Soy-Food of Northeast India. J. Food Biochem. 2024, 2024, 3199103. [Google Scholar] [CrossRef]
- Fernández-Varela, R.; Hansen, A.H.; Svendsen, B.A.; Moghadam, E.G.; Bas, A.; Kračun, S.K.; Harlé, O.; Poulsen, V.K. Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices. Fermentation 2024, 10, 411. [Google Scholar] [CrossRef]
- Tabandeh, F.; Hosseinian Moghaddam, H.R.; Yakhchali, B.; Shariati, P.; Hamed Mousavian, M.T.; Ghasemi, F. Fed-batch fermentation of Bacillus clausii for efficient production of alkaline protease using different feeding strategies. Chem. Eng. Commun. 2011, 198, 1063–1074. [Google Scholar] [CrossRef]
- Thakur, N.; Rokana, N.; Panwar, H. Probiotics, Selection criteria, safety and role in health and. J. Innov. Biol. January 2016, 3, 259–270. Available online: https://www.researchgate.net/publication/298367380_Probiotics_Selection_criteria_safety_and_role_in_health_and_disease (accessed on 1 January 2020).
- Ahasan, A.S.M.L.; Agazzi, A.; Invernizzi, G.; Bontempo, V.; Savoini, G. The beneficial role of probiotics in monogastric animal nutrition and health. J. Dairy Vet. Anim. Res. 2015, 2, 1–20. [Google Scholar] [CrossRef]
- Pinto, M.G.V.; Franz, C.M.; Schillinger, U.; Holzapfel, W.H. LactoBacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 2006, 109, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Martínez-Larrañaga, M.R.; Martínez, M.A. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul. Toxicol. Pharmacol. 2006, 45, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tian, W.; Jiang, Z.; Liang, Z.; Wu, X.; Du, B. Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt. Front. Microbiol. 2018, 9, 2216. [Google Scholar] [CrossRef] [PubMed]
- Gopal, N.; Hill, C.; Ross, P.R.; Beresford, T.P.; Fenelon, M.A.; Cotter, P.D. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol. 2015, 6, 1418. [Google Scholar] [CrossRef] [PubMed]
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; van Rensburg, C.J.; Thantsha, M.S. Advantages of Bacillus-based probiotics in poultry production. Livest. Sci. 2020, 241, 104215. Available online: https://researchspace.csir.co.za/dspace/handle/10204/doi.org/10.1016/j.livsci.2020.104215 (accessed on 1 January 2020). [CrossRef]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 2500–2511. [Google Scholar] [CrossRef]
- Maity, C.; Gupta, A.K. Therapeutic efficacy of probiotic Alkalihalo Bacillus clausii 088AE in antibiotic-associated diarrhea: A randomized controlled trial. Heliyon 2021, 7, e07993. [Google Scholar] [CrossRef]
- Sudha, M.R.; Bhonagiri, S.; Kumar, M.A. Efficacy of Bacillus clausii strain UBBC-07 in the treatment of patients suffering from acute diarrhoea. Benef. Microbes 2013, 4, 211–216. [Google Scholar] [CrossRef]
- McFarland, L.V.; Srinivasan, R.; Setty, R.P.; Ganapathy, S.; Bavdekar, A.; Mitra, M.; Raju, B.; Mohan, N. Specific probiotics for the treatment of pediatric acute gastroenteritis in India: A systematic review and meta-analysis. JPGN Rep. 2021, 2, e079. [Google Scholar] [CrossRef]
- Kahraman, B.; Korkmaz, K.; Daştan, D.; Toker, O.S.; Dertli, E.; Arici, M. Production and characterization of probiotic jelly candy containing Bacillus species. J. Food Meas. Charact. 2023, 17, 5864–5873. [Google Scholar] [CrossRef]
- Lahiri, K.; Jadhav, K.; Gahlowt, P.; Najmuddin, F.; Padmashree, Y. Bacillus clausii as an adjuvant therapy in acute childhood diarrhoea. IOSR-JDMS 2015, 14, 74–76. [Google Scholar] [CrossRef]
- Lakshmi, S.G.; Jayanthi, N.; Saravanan, M.; Ratna, M.S. Safety assessment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol. Rep. 2017, 4, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Mazzantini, D.; Calvigioni, M.; Celandroni, F.; Lupetti, A.; Ghelardi, E. Spotlight on the compositional quality of probiotic formulations marketed worldwide. Front. Microbiol. 2021, 12, 693973. [Google Scholar] [CrossRef] [PubMed]
- Morelli, L.; Pellegrino, P. A critical evaluation of the factors affecting the survival and persistence of beneficial bacteria in healthy adults. Benef. Microbes 2021, 12, 321–331. [Google Scholar] [CrossRef]
- Navarra, P.; Milleri, S.; Perez, M., III; Uboldi, M.C.; Pellegrino, P.; Bois De Fer, B.; Morelli, L. Kinetics of Intestinal Presence of Spores Following Oral Administration of Bacillus clausii Formulations: Three Single-Centre, Crossover, Randomised, Open-Label Studies. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 375–384. [Google Scholar] [CrossRef]
- Joshi, S.; Udani, S.; Sen, S.; Kirolikar, S.; Shetty, A. Bacillus clausii septicemia in a pediatric patient after treatment with probiotics. Pediatr. Infect. Dis. J. 2019, 38, e228–e230. [Google Scholar] [CrossRef]
- Princess, I.; Natarajan, T.; Ghosh, S. When good bacteria behave badly: A case report of Bacillus clausii sepsis in an immunocompetant adult. Access Microbiol. 2020, 2, e000097. [Google Scholar] [CrossRef]
- Khatri, A.M.; Rai, S.; Shank, C.; McInerney, A.; Kaplan, B.; Hagmann, S.H.; Kainth, M.K. A tale of caution: Prolonged Bacillus clausii bacteraemia after probiotic use in an immunocompetent child. Access Microbiol. 2021, 3, 000205. [Google Scholar] [CrossRef]
- García, J.P.; Alzate, J.A.; Hoyos, J.A.; Cristancho, E. Bacteremia after Bacillus clausii administration for the treatment of acute diarrhea: A case report. Biomédica 2021, 41 (Suppl. 2), 13. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.L.; Boyte, M.E.; Elkins, C.A.; Goldman, V.S.; Heimbach, J.; Madden, E.; Oketch-Rabah, H.; Sanders, M.E.; Sirois, J.; Smith, A. Considerations for determining safety of probiotics: A USP perspective. Regul. Toxicol. Pharmacol. 2022, 136, 105266. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of Toyocerin® (Bacillus toyonensis) as a feed additive for chickens for fattening, weaned piglets, pigs for fattening, sows for reproduction, cattle for fattening and calves for rearing and for rabbits for fattening. EFSA J. 2014, 12, 3766. [Google Scholar] [CrossRef]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Grant, A.Q.; Gay, C.G.; Lillehoj, H.S. Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol. 2018, 47, 339–351. [Google Scholar] [CrossRef]
- Cartman, S.T.; La Ragione, R.M.; Woodward, M.J. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl. Environ. Microbiol. 2008, 74, 5254–5258. [Google Scholar] [CrossRef]
- Chaiyawan, N.; Taveeteptaikul, P.; Wannissorn, B.; Ruengsomwong, S.; Klungsupya, P.; Buaban, W.; Itsaranuwat, P. Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai J. Vet. Med. 2015, 40, 207–214. [Google Scholar] [CrossRef]
- Wolfenden, R.E.; Pumford, N.R.; Morgan, M.J.; Shivaramaiah, S.; Wolfenden, A.D.; Tellez, G.; Hargis, B.M. Evaluation of a screening and selection method for Bacillus isolates for use as effective direct-fed microbials in commercial poultry. Int. J. Poult. Sci. 2010, 9, 317–323. [Google Scholar] [CrossRef]
- Mushtaq, M.; Khan, I.U.; Shuaib, M.; Chand, N.; Sufyan, A.; Shah, M.; Islam, Z.; Uzair, M.S.; Khan, A.; Ullah, Q.; et al. Effect of Probiotic Bacillus clausii on Production Parameters and Intestinal Histomorphology of Meat-Type Chicken. Pak. J. Zool. 2023, 1–8. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Martín-Orúe, S.M.; Castillejos, L. Practical aspects of the use of probiotics in pig production: A review. Livest. Sci. 2019, 223, 84–96. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhang, L.; Liu, W.; Zhang, Y.; Zhang, X.; Sun, T. In vitro assessment of probiotic properties of Bacillus isolated from naturally fermented congee from Inner Mongolia of China. World J. Microbiol. Biotechnol. 2010, 26, 1369–1377. [Google Scholar] [CrossRef]
- Ragul, K.; Syiem, I.; Sundar, K.; Shetty, P.H. Characterization of probiotic potential of Bacillus species isolated from a traditional brine pickle. J. Food Sci. Technol. 2017, 54, 4473–4483. [Google Scholar] [CrossRef] [PubMed]
- Shivangi, S.; Devi, P.B.; Ragul, K.; Shetty, P.H. Probiotic potential of Bacillus strains isolated from an acidic fermented food Idli. Probiotics Antimicrob. Proteins 2020, 12, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Horosheva, T.V.; Vodyanoy, V.; Sorokulova, I. Efficacy of Bacillus probiotics in prevention of antibiotic-associated diarrhoea: A randomized, double-blind, placebo-controlled clinical trial. JMM Case Rep. 2014, 1, e004036. [Google Scholar] [CrossRef]
- Jubayer, M.F.; Uddin, M.B.; Faruque, M.O. Standardization parameters for production of tofu using WSD-Y-1 machine. J. Bangladesh Agric. Univ. 2013, 11, 307–312. [Google Scholar] [CrossRef]
- Zeybekoğlu, N.; Özhan, H.; Boyacioğlu, O. Probiotic tofu with Bacillus clausii spores to support gastrointestinal microflora. Adnan Menderes Üniversitesi Sağlık Bilim. Fakültesi Derg. 2021, 5, 534–545. [Google Scholar] [CrossRef]
- Ramos, G.D.; Dias, S.D.S.; Ferreira, I.M.; Oliveira e Silva, A.M.; de Carvalho, M.G. Cashew yogurt shelf life with Bacillus clausii: Chemical, physicochemical and microbiological evaluation. Rev. Bras. De Hig. E Sanidade Anim. 2019, 13, 424–439. [Google Scholar] [CrossRef]
- Ramirez, K.; Pineda-Hidalgo, K.V.; Rochín-Medina, J.J. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. Lwt 2021, 138, 110685. [Google Scholar] [CrossRef]
- Vázquez-Maldonado, D.; Espinosa-Solis, V.; Leyva-Porras, C.; Aguirre-Bañuelos, P.; Martinez-Gutierrez, F.; Román-Aguirre, M.; Saavedra-Leos, M.Z. Preparation of spray-dried functional food: Effect of adding Bacillus clausii bacteria as a co-microencapsulating agent on the conservation of resveratrol. Processes 2020, 8, 849. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Román-Aguirre, M.; Toxqui-Terán, A.; Espinosa-Solís, V.; Franco-Vega, A.; Leyva-Porras, C. Blends of carbohydrate polymers for the co-microencapsulation of Bacillus clausii and quercetin as active ingredients of a functional food. Polymers 2022, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Enciso-Huerta, H.A.; Ruiz-Cabrera, M.A.; Lopez-Martinez, L.A.; Gonzalez-Garcia, R.; Martinez-Gutierrez, F.; Saavedra-Leos, M.Z. Evaluation of Two Active System Encapsulant Matrices with Quercetin and Bacillus clausii for Functional Foods. Polymers 2022, 14, 5225. [Google Scholar] [CrossRef] [PubMed]
Physiological Attributes of B. clausii Spore | Antimicrobial and Immunomodulatory Activity |
---|---|
Acid, heat, bile salt tolerant. | Mucin secretion promoter-gut permeability reducer. |
Gut barrier function enhancer. | Lantibiotics producer. |
Vitamin synthesizer. | Pro and anti-inflammatory cytokines regulator. |
Antibiotic resistant. | Serine protease activity on enterotoxins. |
Other biochemical and metabolic properties. | Increasing the level of T cells + CD4, enteropathogens suppressor. |
Antibiotic | B. clausii O/C | B. clausii SIN | B. clausii N/R | B. clausii T |
---|---|---|---|---|
Oxacillin | 8 | 0 | 0 | 9 ± 1.1 |
Cefuroxime | 10 ± 0.7 | 0 | 0 | 12 ± 0.8 |
Cefepime | 8 ± 1 | 0 | 0 | 11 ± 0.5 |
Streptomycin | 28 ± 0.4 | 0 | 26 ± 0.6 | 30 ± 0.5 |
Chloramphenicol | 0 | 16 ± 0.6 | 13 | 15 ± 0.6 |
Rifampicin | 24 ± 0.5 | 26 ± 0.5 | 0 | 27 ± 0.6 |
Metronidazole | 0 | 0 | 0 | 0 |
Strain Type of B. clausii | Physiological Effects |
---|---|
O/C, N/R, SIN, and T strains [50]. | |
B106 strain [51,52]. | |
A combination of B. clausii strains [56]. |
|
Strain of Pseudoxanthomonas-Streptomyces-Saccharopolyspora-B. clausii [57]. | |
B. clausii SC-109 spores in combination with prebiotic fiber [58]. | |
UBBC07 spores (in a vivo study—on rat-subjected uremia) [59]. | Diminishing the symptomatic consequences of acetaminophen therapy such as high levels of serum urea, creatinine, and malondialdehyde [59]. |
A combination of B. clausii spores [60]. | Diminishing high serum urea in patients with chronic renal failure [61]. |
B. clausii | Antimicrobial Behavior | Targeting Pathogens of … |
---|---|---|
B. clausii strains [11]. | Releasing the anti-microbial substances and the ability to sharpen the host immunity system. | Pathogens of Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile [11]. |
B. clausii vegetative cells [62]. | In whey culture, producing peptides with antibiotic capability. | Salmonella typhimurium, Escherichia coli, Shigella flexneri, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis [62]. |
B. clausii Sinuberase [62]. | In fermented coffee ground beans, releasing probiotic-based antimicrobial peptides. | Salmonella typhimurium, Escherichia coli, Shigella flexneri, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis [62]. |
Strains of B. clausii—UBBC07 and O/C [29,63]. | Releasing of clausin peptide. | Gram-positive bacteria such as Clostridium difficile [29,63] |
Strain of O/C strain [11,64]. | Producing the clausin peptide. | Cytotoxic effects on pathogens ability of peptidoglycan. |
B. clausii Strains | Immune-Regulatory Properties | Target (In Vivo-In Vitro) |
---|---|---|
Vegetative cells of B. clausii (O/C, N/R, SIN, and T) [11]. |
| Infection-induced diarrhea; Clinical effectiveness [11]. |
B. clausii spores in a joint treatment with rehydrate solutions [25]. |
| Clostridium difficile or, Helicobacter pylori pathogens [25]. |
B. clausii MTCC-8326 [67]. |
| Salmonella typhimurium pathogen [67]. |
O/C strain of B. clausii [68]. | Promoting the release of nitric oxide from RAW 264.7 macrophages. | Immuno-regulatory behavior [68]. |
A mixture of B. clausii (O/C, N/R, SIN, and T spores) [69]. |
| Targeting ulcerative colitis in mice [69]. |
Administration of mixed strains (O/C, N/R, SIN, and T) [69]. |
| Infested mice by common tropical and sub-tropical parasites (worms) [69]. Targeting irregularity of immune-system [69]. |
B. clausii, in particular, in joint treatment with other therapies [12,70]. |
| No data |
Name of the Species | Typical Dosing Form of the Usage Times of Usage | Manufacturer Product Information | Contraindications | Pregnancy/ Lactation | Interactions Toxicology | Adverse Effects |
---|---|---|---|---|---|---|
Bacillus clausii |
| Adults: 4 to 6 × 109 spores/daily (2 to 3 times/daily of suspension or 2 to 3 times capsules/day). Children and Toddlers: 2 to 4 × 109 spores/daily (for a short term). | Hypersensitivity to probiotics | According to EFSA, the B. clausii can be used during conception/ pregnancy and breastfeeding infants. | Not well-documented. No data. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrimovahed, M.; Ulusoy, B.H. Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications. Fermentation 2024, 10, 522. https://doi.org/10.3390/fermentation10100522
Sadrimovahed M, Ulusoy BH. Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications. Fermentation. 2024; 10(10):522. https://doi.org/10.3390/fermentation10100522
Chicago/Turabian StyleSadrimovahed, Mahtab, and Beyza H. Ulusoy. 2024. "Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications" Fermentation 10, no. 10: 522. https://doi.org/10.3390/fermentation10100522
APA StyleSadrimovahed, M., & Ulusoy, B. H. (2024). Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications. Fermentation, 10(10), 522. https://doi.org/10.3390/fermentation10100522