Aerobic Stability of High-Moisture Corn Ensiled with Lactiplantibacillus plantarum During Prolonged Air Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. High-Moisture Corn Preparation and Aeration
2.2. Chemical Analysis
2.3. Data Analysis
3. Results
3.1. Aerobic Stability
3.2. Content of Acids and Alchocols During the Aeration Period
3.3. pH and Contents of Main Nutrients at the Beginning and End of Aeration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Chávez, I.; Meraz-Romero, E.; Castelán-Ortega, O.; Esparza, J.Z.; Avalos, J.O.; Jimenez, L.E.R.; González-Ronquillo, M. Corn silage, meta-analysis of the quality and yield of different regions in the world. Preprints 2020, 2020100094. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Davies, D. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Kung, L.; Ranjit, N.K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef]
- DLG TestServicen GmbH. DLG Testing Guidelines for the Award und Use of the DLG Quality Mark for Ensiling Agents, Prepared Under the Auspices of the DLG Commission for Ensiling Agents. 2018. Available online: https://www.dlg-testservice.com/en/agricultural-technology-operating-resources/dlg-awards-at-a-glance (accessed on 23 September 2024).
- Jatkauskas, J.; Vrotniakiene, V.; Eisner, I.; Witt, K.L.; do Amaral, R.C. Comparison of the chemical and microbial composition and aerobic stability of high-moisture barley grain ensiled with either chemical or viable lactic acid bacteria application. Fermentation 2024, 10, 62. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2016, 15, 259–263. [Google Scholar] [CrossRef]
- IUSS—WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- HRN ISO 6496:2001; Animal Feed—Determination of Moisture and Other Volatile Matter Content. Croatian Standards Institute: Zagreb, Croatia, 2001.
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef]
- HRN ISO 5983-2:2010; Animal Feed—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. Croatian Standards Institute: Zagreb, Croatia, 2010.
- Mousdale, D.M. The analytical chemistry of microbial cultures. In Applied Microbial Physiology. A Practical Approach; Rhodes, P.M., Stanbury, P.F., Eds.; Oxford University Press Inc.: New York, NY, USA, 1997; pp. 165–192. [Google Scholar]
- Åkerlind, M.; Weisbjerg, M.; Eriksson, T.; Tøgersen, R.; Udén, P.; Ólafsson, B.L.; Harstad, O.M.; Volden, H. Feed analyses and digestion methods. In NorFor-The Nordic Feed Evaluation System; Volden, H., Ed.; Brill Wageningen Academic: Leiden, The Netherlands, 2011; pp. 41–54. [Google Scholar]
- Nishino, N.; Uchida, S. Laboratory assessment of pre-fermented juice as a fermentation stimulant for lucerne silage. J. Sci. Food Agric. 1999, 79, 1285–1288. [Google Scholar] [CrossRef]
- Canale, A.; Valente, M.E.; Ciotti, A. Quantification of volatile carboxylic acids (C1–C5i) and lactic acid in aqueous acid extracts of silage by high-performance liquid chromatography. J. Sci. Food Agric. 1984, 35, 1178–1182. [Google Scholar] [CrossRef]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; SAS Institute Incorporated: Cary, NC, USA, 1998; pp. 1243–1246. [Google Scholar]
- Filya, I. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Wardynski, F.A.; Rust, S.R.; Yokoyama, M.T. Effect of microbial inoculation of high-moisture corn on fermentation characteristics, aerobic stability, and cattle performance. J. Anim. Sci. 1993, 71, 2246–2252. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, É.B.; Polukis, S.A.; Smith, M.L.; Voshell, R.S.; Leggett, M.J.; Jones, P.B.; Kung, L., Jr. The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn. J. Dairy Sci. 2024, 107, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, N.K.; Kung, L., Jr. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2000, 83, 526–3535. [Google Scholar] [CrossRef]
- Liu, Q.H.; Dong, Z.H.; Shao, T. Effect of additives on fatty acid profile of high moisture alfalfa silage during ensiling and after exposure to air. Anim. Feed Sci. Technol. 2018, 236, 29–38. [Google Scholar] [CrossRef]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L., Jr. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef]
- Kljak, K.; Gunjević, V.; Kavčić, T.; Zurak, D.; Duvnjak, M.; Kiš, G.; Grbeša, D. Changes in chemical composition and fermentation profile in silages from rehydrated grains of maize hybrids during prolonged air exposure. Curr. Res. Biotechnol. 2024, 7, 100206. [Google Scholar] [CrossRef]
- Dawson, T.E.; Rust, S.R.; Yokoyama, M.T. Improved fermentation and aerobic stability of ensiled, high moisture corn with the use of Propionibacterium acidipropionici. J. Dairy Sci. 1998, 81, 1015–1021. [Google Scholar] [CrossRef]
- Canibe, N.; Kristensen, N.B.; Jensen, B.B.; Vils, E. Impact of silage additives on aerobic stability and characteristics of high-moisture maize during exposure to air, and on fermented liquid feed. J. Appl. Microbiol. 2014, 116, 747–760. [Google Scholar] [CrossRef]
- Pang, H.; Zhou, P.; Yue, Z.; Wang, Z.; Qin, G.; Wang, Y.; Tan, Z.; Cai, Y. Fermentation characteristics, chemical composition, and aerobic stability in whole crop corn silage treated with lactic acid bacteria or Artemisia argyi. Agriculture 2024, 14, 1015. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.G. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res. 2016, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Venâncio, A. The potential of fatty acids and their derivatives as antifungal agents: A review. Toxins 2022, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Hafner, S.D.; Howard, C.; Muck, R.E.; Franco, R.B.; Montes, F.; Green, P.G.; Mitloehner, F.; Trabue, S.L.; Rotz, C.A. Emission of volatile organic compounds from silage: Compounds, sources, and implications. Atmos. Environ. 2013, 77, 827–839. [Google Scholar] [CrossRef]
- Da Silva, N.C.; Nascimento, C.F.; Nascimento, F.A.; De Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. J. Dairy Sci. 2018, 101, 4158–4167. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Masoero, F.; Ferraretto, L.F.; Hoffman, P.C.; Shaver, R.D. Factors affecting starch utilization in large animal food production system: A review. Starch-Stärke 2014, 66, 72–90. [Google Scholar] [CrossRef]
- Philippeau, C.; Michalet-Doreau, B. Influence of genotype and ensiling of corn grain on in situ degradation of starch in the rumen. J. Dairy Sci. 1998, 81, 2178–2184. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.; Scott, M.P.; Bodnar, A.L.; Schmidt, R.J.; Charley, R.C. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef]
- Duvnjak, M.; Butorac, A.; Kljak, K.; Nišavić, M.; Cindrić, M.; Grbeša, D. The Evaluation of γ-Zein Reduction Using Mass Spectrometry—The Influence of Proteolysis Type in Relation to Starch Degradability in Silages. Fermentation 2022, 8, 551. [Google Scholar] [CrossRef]
- Driehuis, F.; Elferink, S.O.; Spoelstra, S.F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 1999, 87, 583–594. [Google Scholar] [CrossRef]
Ensiling Method | Aeration | SEM | p | |||
---|---|---|---|---|---|---|
Beginning | End | Ensiling Method | Aeration | Ensiling Method × Aeration | ||
pH | ||||||
With inoculant | 4.14 | 4.01 | 0.121 | <0.001 | 0.096 | 0.471 |
Without inoculant | 4.89 | 4.59 | ||||
DM/g/kg | ||||||
With inoculant | 693 | 704 | 8.6 | 0.218 | 0.766 | 0.133 |
Without inoculant | 695 | 679 | ||||
CP/g/kg DM | ||||||
With inoculant | 106.6 | 112.6 | 3.65 | 0.445 | 0.099 | 0.914 |
Without inoculant | 109.0 | 115.8 | ||||
SCP/g/kg CP | ||||||
With inoculant | 275.5 | 321.3 | 13.6 | 0.619 | <0.001 | 0.084 |
Without inoculant | 257.3 | 353.3 | ||||
WSC/g/kg DM | ||||||
With inoculant | 23.47 | 10.69 | 11.3 | 0.293 | 0.221 | 0.877 |
Without inoculant | 37.67 | 21.32 | ||||
Starch/g/kg DM | ||||||
With inoculant | 709 | 697 | 6.20 | 0.703 | 0.015 | 0.401 |
Without inoculant | 712 | 689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duvnjak, M.; Bogunović, I.; Kljak, K. Aerobic Stability of High-Moisture Corn Ensiled with Lactiplantibacillus plantarum During Prolonged Air Exposure. Fermentation 2024, 10, 580. https://doi.org/10.3390/fermentation10110580
Duvnjak M, Bogunović I, Kljak K. Aerobic Stability of High-Moisture Corn Ensiled with Lactiplantibacillus plantarum During Prolonged Air Exposure. Fermentation. 2024; 10(11):580. https://doi.org/10.3390/fermentation10110580
Chicago/Turabian StyleDuvnjak, Marija, Igor Bogunović, and Kristina Kljak. 2024. "Aerobic Stability of High-Moisture Corn Ensiled with Lactiplantibacillus plantarum During Prolonged Air Exposure" Fermentation 10, no. 11: 580. https://doi.org/10.3390/fermentation10110580
APA StyleDuvnjak, M., Bogunović, I., & Kljak, K. (2024). Aerobic Stability of High-Moisture Corn Ensiled with Lactiplantibacillus plantarum During Prolonged Air Exposure. Fermentation, 10(11), 580. https://doi.org/10.3390/fermentation10110580