Enhanced Production of Acid Phosphatase in Bacillus subtilis: From Heterologous Expression to Optimized Fermentation Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Media
2.2. Construction, Preparation, and Purification of Acid Phosphatase
2.3. Methods of Enzyme Activity Determination
2.4. ACPase’s Optimal Temperature and Thermal Stability
2.5. Optimal Reaction pH and Acid-Base Stability of ACPase
2.6. Effect of Metal Ions on ACPase Activity
2.7. Determination of ACPase Kinetic Parameters
2.8. Bioreactor Design
- An agitation system: A dual impeller configuration comprising a Rushton turbine for mixing and a specialized paddle for foam control.
- A process control unit: Automated management of the following:
- (1)
- Substrate feeding via a peristaltic pump,
- (2)
- pH regulation,
- (3)
- Continuous culture operation,
- (4)
- Antifoam addition,
- (5)
- Agitation speed control [23].
- Monitoring and control devices:
- (1)
- A dissolved oxygen probe for real-time oxygen measurement,
- (2)
- Temperature control through a heating jacket with auxiliary water cooling,
- (3)
- An air supply system with sterile filtration.
- A data acquisition system for continuous process monitoring.
2.9. A Dynamic Method to Determine the Volumetric Mass Transfer Coefficient KLa for a 5L Bioreactor Under Non-Culture Conditions
2.10. Seed Culture Preparation
2.11. Effect of Carbon and Nitrogen Source Type and Its Concentration on Bacterial Volume and Enzyme Production
2.12. The Determination of the Basal Growth Curve of the Recombinant B. subtilis 168/pMA5-Acp in a Home-Built Bioreactor
2.13. The Determination of the Enzyme Production Curve of the Strain
3. Results and Discussion
3.1. Construction of High Acid Phosphatase-Producing Recombinant B. subtilis 168/pMA5-Acp
3.2. Enzymatic Property Studies
3.3. Effect of Different Carbon and Nitrogen Sources on Biomass and Enzyme Production During Fermentation of Recombinant B. subtilis 168/pMA5-Acp
3.4. Effect of Aeration Ratio (Volume) and Rotational Speed on Dissolved Oxygen and OD Values During Fermentation After Media Optimization
3.5. Comparison of Recombinant B. subtilis 168/pMA5-Acp Fermentation Enzyme Production Conditions Before and After Optimization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Arredondo, D.L.; Leyva-Gonzalez, M.A.; Gonzalez-Morales, S.I.; Lopez-Bucio, J.; Herrera-Estrella, L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Li, S.; Zhang, W.; Yin, C.; Lin, Y. Regulation of phytohormones on the growth and development of plant root hair. Front. Plant Sci. 2022, 13, 865302. [Google Scholar] [CrossRef] [PubMed]
- Feder, D.; Mcgeary, R.P.; Mitic, N.; Lonhienne, T.; Furtado, A.; Schulz, B.L.; Henry, R.J.; Schmidt, S.; Guddat, L.W.; Schenk, G. Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops. Plant Sci. 2020, 294, 110445. [Google Scholar] [CrossRef]
- Lei, Y.; Cao, Z.; Hou, Y.; Du, X.; Zhang, H.; Du, H.; Zhou, Y.; Sun, Y. Molecular characterization and functional analysis of tartrate-resistant acid phosphatase (acp5) gene in red drum (Sciaenops ocellatus). Fish Shellfish Immunol. 2023, 132, 108495. [Google Scholar] [CrossRef]
- Wilson, L.A.; Pedroso, M.M.; Peralta, R.A.; Gahan, L.R.; Schenk, G. Biomimetics for purple acid phosphatases: A historical perspective. J. Inorg. Biochem. 2023, 238, 112061. [Google Scholar] [CrossRef]
- Chafik, A.; Essamadi, A.; Çelik, S.Y.; Mavi, A. A novel acid phosphatase from cactus (opuntia megacantha salm-dyck) cladodes: Purification and biochemical characterization of the enzyme. Int. J. Biol. Macromol. 2020, 160, 991–999. [Google Scholar] [CrossRef]
- Zaman, U.; Khan, S.U.; Hendi, A.A.; Rehman, K.U.; Badshah, S.; Refat, M.S.; Alsuhaibani, A.M.; Ullah, K.; Wahab, A. Kinetic and thermodynamic studies of novel acid phosphatase isolated and purified from Carthamus oxyacantha seedlings. Int. J. Biol. Macromol. 2023, 224, 20–31. [Google Scholar] [CrossRef]
- Heid, L.F.; Agerschou, E.D.; Orr, A.A.; Kupreichyk, T.; Schneider, W.; Wördehoff, M.M.; Schwarten, M.; Willbold, D.; Tamamis, P.; Stoldt, M. Sequence-based identification of amyloidogenic β-hairpins reveals a prostatic acid phosphatase fragment promoting semen amyloid formation. Comp. Struct. Biotechnol. J. 2024, 23, 417–430. [Google Scholar] [CrossRef]
- Sang, Z.; Bao, M.; Liang, Y.; Chu, K.; Wang, L. Identification of acid phosphatase (shacp) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium. Ecotoxicol. Environ. Saf. 2023, 255, 114762. [Google Scholar] [CrossRef]
- Mahadik, N.D.; Puntambekar, U.S.; Bastawde, K.B.; Khire, J.M.; Gokhale, D.V. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem. 2002, 38, 715–721. [Google Scholar] [CrossRef]
- Payne, W.E.; Gannon, P.M.; Kaiser, C.A. An inducible acid phosphatase from the yeast Pichia pastoris: Characterization of the gene and its product. Gene 1995, 163, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Rangu, S.S.; Singh, R.; Gaur, N.K.; Rath, D.; Makde, R.D.; Mukhopadhyaya, R. Isolation and characterization of a recombinant class c acid phosphatase from Sphingobium sp. Rsms strain. Biotechnol. Rep. 2022, 33, e709. [Google Scholar] [CrossRef] [PubMed]
- Boulain, J.C.; Ducancel, F. Expression of recombinant alkaline phosphatase conjugates in Escherichia coli. Methods Mol. Biol. 2004, 267, 101–112. [Google Scholar] [PubMed]
- Song, W.; Zheng, K.; Xu, X.; Gao, C.; Guo, L.; Liu, J.; Chen, X.; Liu, L.; Hu, G.; Wu, J. Enzymatic production of ascorbic acid-2-phosphate by engineered pseudomonas aeruginosa acid phosphatase. J. Agric. Food Chem. 2021, 69, 14215–14221. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.J.; Hallett, D.S.; Macaskie, L.E. Phosphatase production by a Citrobacter sp. Growing in batch culture and use of batch cultures to investigate some limitations in the use of polyacrylamide gel-immobilized cells for product release. Enzyme. Microb. Technol. 1991, 13, 716–721. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, F. Enzymes in food industry: Fermentation process, properties, rational design, and applications. Foods 2024, 13, 3196. [Google Scholar] [CrossRef]
- Feng, R.; Chen, L.; Chen, K. Fermentation trip: Amazing microbes, amazing metabolisms. Ann. Microbiol. 2018, 68, 717–729. [Google Scholar] [CrossRef]
- Zhao, T.; Tashiro, Y.; Sonomoto, K. Smart fermentation engineering for butanol production: Designed biomass and consolidated bioprocessing systems. Appl. Microbiol. Biotechnol. 2019, 103, 9359–9371. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Pan, F.; Shi, Z. Generalised additive modelling approach to the fermentation process of glutamate. Bioresour. Technol. 2011, 102, 4184–4190. [Google Scholar] [CrossRef] [PubMed]
- Carlos, G.; René, A.F.; Oscar, A.R. Fermentation: Metabolism, kinetic models, and bioprocessing. In Current Topics in Biochemical Engineering; Naofumi, S., Ed.; IntechOpen: Rijeka, Croatia, 2018; p. 2. [Google Scholar]
- Marzadori, C.; Gessa, C.; Ciurli, S. Kinetic properties and stability of potato acid phosphatase immobilized on ca-polygalacturonate. Biol. Fertil. Soils 1998, 27, 97–103. [Google Scholar] [CrossRef]
- Colucci Cante, R.; Gallo, M.; Nigro, F.; Passannanti, F.; Budelli, A.; Nigro, R. Mathematical modeling of lactobacillus paracasei cba l74 growth during rice flour fermentation performed with and without PH control. Appl. Sci. 2021, 11, 2921. [Google Scholar] [CrossRef]
- Mazaheri, D.; Shojaosadati, S.A. Mathematical models for microbial kinetics in solid-state fermentation: A review. Iran. J. Biotechnol. 2013, 11, 156–167. [Google Scholar] [CrossRef]
- Linek, V.; Benes, P.; Vacek, V. Dynamic pressure method for kla measurement in large-scale bioreactors. Biotechnol. Bioeng. 1989, 33, 1406–1412. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Wiechelman, K.J.; Braun, R.D.; Fitzpatrick, J.D. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal. Biochem. 1988, 175, 231–237. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Osire, T.; Fu, W.; Yi, G.; Yang, S.T.; Yang, T.; Rao, Z. Enhanced prodigiosin production in Serratia marcescens jnb5-1 by introduction of a polynucleotide fragment into the pign 3′ untranslated region and disulfide bonds into o-methyl transferase (pigf). Appl. Environ. Microbiol. 2021, 87, e54321. [Google Scholar] [CrossRef]
- Shi, Z.P.; Pan, F. Fermentation Process Analysis, Control and Detection Technology; Modern Fermentation Engineering Series; Chemical Industry Press: Beijing, China, 2000. [Google Scholar]
- Zhang, K.; Su, L.; Duan, X.; Liu, L.; Wu, J. High-level extracellular protein production in bacillus subtilis using an optimized dual-promoter expression system. Microb. Cell Fact. 2017, 16, 32. [Google Scholar] [CrossRef]
- Lu, S.; Andersen, J.F.; Bosio, C.F.; Hinnebusch, B.J.; Ribeiro, J.M. Acid phosphatase-like proteins, a biogenic amine and leukotriene-binding salivary protein family from the flea Xenopsylla cheopis. Commun. Biol. 2023, 6, 1280. [Google Scholar] [CrossRef]
- Smiley-Moreno, E.; Smith, D.; Yu, J.J.; Cao, P.; Arulanandam, B.P.; Chambers, J.P. Biochemical characterization of a recombinant acid phosphatase from Acinetobacter baumannii. PLoS ONE 2021, 16, e252377. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z. Studies on Expression of Acid Phosphatase by Pichia Pastoris and Its Preliminary Activity; JILIN University: Changchun, China, 2023. [Google Scholar]
- Behera, B.C.; Yadav, H.; Singh, S.K.; Mishra, R.R.; Sethi, B.K.; Dutta, S.K.; Thatoi, H.N. Phosphate solubilization and acid phosphatase activity of Serratia sp. Isolated from mangrove soil of Mahanadi river delta, Odisha, India. J. Genet. Eng. Biotechnol. 2017, 15, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Abdelgalil, S.A.; Kaddah, M.; Duab, M.; Abo-Zaid, G.A. A sustainable and effective bioprocessing approach for improvement of acid phosphatase production and rock phosphate solubilization by Bacillus haynesii strain acp1. Sci. Rep. 2022, 12, 8926. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E.; Santos, V.E.; Merchuk, J.C. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 2010, 49, 289–307. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, P.P.; Fan, P.; Zhu, Y.M.; Tong, Y.; Wang, H.B.; Yu, L.J. Four-stage dissolved oxygen strategy based on multi-scale analysis for improving Spinosad yield by Saccharopolyspora spinosa atcc49460. Microb. Biotechnol. 2015, 8, 561–568. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shuai, W.; Xu, Z.; Yu, X.; Yao, Z.; Wei, P.; Ni, F.; Sun, Y. Enhanced Production of Acid Phosphatase in Bacillus subtilis: From Heterologous Expression to Optimized Fermentation Strategy. Fermentation 2024, 10, 594. https://doi.org/10.3390/fermentation10120594
Liu Y, Shuai W, Xu Z, Yu X, Yao Z, Wei P, Ni F, Sun Y. Enhanced Production of Acid Phosphatase in Bacillus subtilis: From Heterologous Expression to Optimized Fermentation Strategy. Fermentation. 2024; 10(12):594. https://doi.org/10.3390/fermentation10120594
Chicago/Turabian StyleLiu, Yang, Wenjing Shuai, Zheng Xu, Xiao Yu, Zhong Yao, Ping Wei, Fang Ni, and Yang Sun. 2024. "Enhanced Production of Acid Phosphatase in Bacillus subtilis: From Heterologous Expression to Optimized Fermentation Strategy" Fermentation 10, no. 12: 594. https://doi.org/10.3390/fermentation10120594
APA StyleLiu, Y., Shuai, W., Xu, Z., Yu, X., Yao, Z., Wei, P., Ni, F., & Sun, Y. (2024). Enhanced Production of Acid Phosphatase in Bacillus subtilis: From Heterologous Expression to Optimized Fermentation Strategy. Fermentation, 10(12), 594. https://doi.org/10.3390/fermentation10120594