State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae
Abstract
:1. Introduction
1.1. Glucose Oxidase (GOx)
1.2. Cellobiose Dehydrogenase (CDH)
1.3. Horseradish Peroxidase (HRP)
1.4. Laccase (LAC)
2. Heterologous Expression
2.1. Saccharomyces Cerevisiae
2.1.1. GOx
2.1.2. CDH
2.1.3. HRP
2.1.4. LAC
2.2. Pichia Pastoris
2.2.1. GOx
2.2.2. CDH
2.2.3. HRP
2.2.4. LAC
3. State-of-the-Art Technologies for Increasing Recombinant Protein Expression
3.1. Directed Evolution and Protein and Strain Engineering
3.2. High-Throughput Screening Methods
3.2.1. Flow Cytometry
3.2.2. Microfluidics
3.2.3. In Vitro Compartmentalization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tikhonov, B.B.; Sulman, E.M.; Stadol’nikova, P.Y.; Sulman, A.M.; Golikova, E.P.; Sidorov, A.I.; Matveeva, V.G. Immobilized Enzymes from the Class of Oxidoreductases in Technological Processes: A Review. Catal. Ind. 2019, 11, 251–263. [Google Scholar] [CrossRef]
- Robinson, P.K. Enzymes: Principles and Biotechnological Applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- Cárdenas-Moreno, Y.; González-Bacerio, J.; García Arellano, H.; del Monte-Martínez, A. Oxidoreductase Enzymes: Characteristics, Applications, and Challenges as a Biocatalyst. Biotechnol. Appl. Biochem. 2023, 70, 2108–2135. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on Their Way to Industrial Biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Senćanski, M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. Chemical Modification of Glycoproteins’ Carbohydrate Moiety as a General Strategy for the Synthesis of Efficient Biocatalysts by Biomimetic Mineralization: The Case of Glucose Oxidase. Polymers 2021, 13, 3875. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose Oxidase—An Overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, X.; Wang, Y.; Li, X.; Wan, M.; Zhang, G.; Leng, F.; Zhang, H. Insights into the Structures, Inhibitors, and Improvement Strategies of Glucose Oxidase. Int. J. Mol. Sci. 2022, 23, 9841. [Google Scholar] [CrossRef]
- Bauer, J.A.; Zámocká, M.; Majtán, J.; Bauerová-Hlinková, V. Glucose Oxidase, an Enzyme “Ferrari”: Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022, 12, 472. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Ahmadi, N.; Soltani Fard, E.; Mousavi, P.; Khalvati, B.; Maleksabet, A.; Savardashtaki, A.; Taheri-Anganeh, M.; Movahedpour, A. Glucose Oxidase: Applications, Sources, and Recombinant Production. Biotechnol. Appl. Biochem. 2022, 69, 939–950. [Google Scholar] [CrossRef]
- Csarman, F.; Wohlschlager, L.; Ludwig, R. Cellobiose Dehydrogenase. In the Enzymes; Chaiyen, P., Tamanoi, F., Eds.; Academic Press: Cambridge, CA, USA, 2020; Volume 47, pp. 457–489. [Google Scholar]
- Scheiblbrandner, S.; Csarman, F.; Ludwig, R. Cellobiose Dehydrogenase in Biofuel Cells. Curr. Opin. Biotechnol. 2022, 73, 205–212. [Google Scholar] [CrossRef]
- Kracher, D.; Ludwig, R. Cellobiose Dehydrogenase: An Essential Enzyme for Lignocellulose Degradation in Nature—A Review/Cellobiosedehydrogenase: Ein Essentielles Enzym Für Den Lignozelluloseabbau in Der Natur–Eine Übersicht. Die Bodenkult. J. Land. Manag. Food Environ. 2016, 67, 145–163. [Google Scholar] [CrossRef]
- Balaz, A.; Blazic, M.; Popovic, N.; Prodanovic, O.; Ostafe, R.; Fischer, R.; Prodanovic, R. Expression, Purification and Characterization of Cellobiose Dehydrogenase Mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H Strain. J. Serbian Chem. Soc. 2020, 85, 25–35. [Google Scholar] [CrossRef]
- Sulej, J.; Jaszek, M.; Osińska-Jaroszuk, M.; Matuszewska, A.; Bancerz, R.; Janczarek, M. Natural Microbial Polysaccharides as Effective Factors for Modification of the Catalytic Properties of Fungal Cellobiose Dehydrogenase. Arch. Microbiol. 2021, 203, 4433–4448. [Google Scholar] [CrossRef]
- Stanišić, M.D.; Popović Kokar, N.; Ristić, P.; Balaž, A.M.; Ognjanović, M.; Đokić, V.R.; Prodanović, R.; Todorović, T.R. The Influence of Isoenzyme Composition and Chemical Modification on Horseradish Peroxidase@ZIF-8 Biocomposite Performance. Polymers 2022, 14, 4834. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, V.; Chubar, T.; Kapeliuch, Y.; Börchers, T.; Spener, F.; Egorova, A. New Approaches for Functional Expression of Recombinant Horseradish Peroxidase C in Escherichia coli. Biocatal. Biotransformation 1999, 17, 359–379. [Google Scholar] [CrossRef]
- Spadiut, O.; Herwig, C. Production and Purification of the Multifunctional Enzyme Horseradish Peroxidase. Pharm. Bioprocess. 2013, 1, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Pantić, N.; Spasojević, M.; Stojanović, Ž.; Veljović, Đ.; Krstić, J.; Balaž, A.M.; Prodanović, R.; Prodanović, O. Immobilization of Horseradish Peroxidase on Macroporous Glycidyl-Based Copolymers with Different Surface Characteristics for the Removal of Phenol. J. Polym. Environ. 2022, 30, 3005–3020. [Google Scholar] [CrossRef]
- Veitch, N.C. Horseradish Peroxidase: A Modern View of a Classic Enzyme. Phytochemistry 2004, 65, 249–259. [Google Scholar] [CrossRef]
- Piscitelli, A.; Pezzella, C.; Giardina, P.; Faraco, V.; Sannia, G. Heterologous Laccase Production and Its Role in Industrial Applications. Bioeng. Bugs 2010, 1, 254–264. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Paice, M.G. Demethylation and Delignification of Kraft Pulp by Trametes versicolor Laccase in the Presence of 2,2?-Azinobis-(3-Ethylbenzthiazoline-6-Sulphonate). Appl. Microbiol. Biotechnol. 1992, 36, 823–827. [Google Scholar] [CrossRef]
- Kawai, S.; Umezawa, T.; Higuchi, T. Degradation Mechanisms of Phenolic β-1 Lignin Substructure Model Compounds by Laccase of Coriolus versicolor. Arch. Biochem. Biophys. 1988, 262, 99–110. [Google Scholar] [CrossRef]
- Eggert, C.; Temp, U.; Dean, J.F.D.; Eriksson, K.-E.L. A Fungal Metabolite Mediates Degradation of Non-phenolic Lignin Structures and Synthetic Lignin by Laccase. FEBS Lett. 1996, 391, 144–148. [Google Scholar] [CrossRef]
- Necochea, R.; Valderrama, B.; Dãaz-Sandoval, S.; Folch-Mallol, J.L.; Vázquez-Duhalt, R.; Iturriaga, G. Phylogenetic and Biochemical Characterisation of a Recombinant Laccase from Trametes versicolor. FEMS Microbiol. Lett. 2005, 244, 235–241. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Khatami, S.H.; Vakili, O.; Movahedpour, A.; Ghesmati, Z.; Ghasemi, H.; Taheri-Anganeh, M. Laccase: Various Types and Applications. Biotechnol. Appl. Biochem. 2022, 69, 2658–2672. [Google Scholar] [CrossRef]
- Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M. Yeast Expression Systems: Overview and Recent Advances. Mol. Biotechnol. 2019, 61, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia Pastoris: A Highly Successful Expression System for Optimal Synthesis of Heterologous Proteins. J. Cell Physiol. 2020, 235, 5867–5881. [Google Scholar] [CrossRef] [PubMed]
- Gündüz Ergün, B.; Hüccetoğulları, D.; Öztürk, S.; Çelik, E.; Çalık, P. Established and Upcoming Yeast Expression Systems. In Recombinant Protein Production in Yeast; Gasser, B., Mattanovich, D., Eds.; Humana Press: Totowa, NJ, USA, 2019; Volume 1923, pp. 1–74. [Google Scholar]
- Huang, C.-J.; Lowe, A.J.; Batt, C.A. Recombinant Immunotherapeutics: Current State and Perspectives Regarding the Feasibility and Market. Appl. Microbiol. Biotechnol. 2010, 87, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Hasunuma, T.; Ishii, J.; Kondo, A. Rational Design and Evolutional Fine Tuning of Saccharomyces cerevisiae for Biomass Breakdown. Curr. Opin. Chem. Biol. 2015, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Partow, S.; Siewers, V.; Bjørn, S.; Nielsen, J.; Maury, J. Characterization of Different Promoters for Designing a New Expression Vector in Saccharomyces cerevisiae. Yeast 2010, 27, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Kulagina, N.; Besseau, S.; Godon, C.; Goldman, G.H.; Papon, N.; Courdavault, V. Yeasts as Biopharmaceutical Production Platforms. Front. Fungal Biol. 2021, 2, 733492. [Google Scholar] [CrossRef] [PubMed]
- Kingsman, S.M.; Kingsman, A.J.; Dobson, M.J.; Mellor, J.; Roberts, N.A. Heterologous Gene Expression in Saccharomyces cerevisiae. Biotechnol. Genet. Eng. Rev. 1985, 3, 377–416. [Google Scholar] [CrossRef] [PubMed]
- Karaoğlan, M.; Erden-Karaoğlan, F. Effect of Codon Optimization and Promoter Choice on Recombinant Endo-Polygalacturonase Production in Pichia pastoris. Enzym. Microb. Technol. 2020, 139, 109589. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-H.; Shin, Y.-M.; Lim, Y.-Y.; Kwon, T.-H.; Kim, D.-H.; Yang, M.-S. Expression of Glucose Oxidase by Using Recombinant Yeast. J. Biotechnol. 2000, 81, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kapat, A.; Jung, J.-K.; Park, Y.-H. Enhancement of Extracellular Glucose Oxidase Production in PH-Stat Feed-Back Controlled Fed-Batch Culture of Recombinant Saccharomyces cerevisiae. Biotechnol. Lett. 1998, 20, 683–686. [Google Scholar] [CrossRef]
- De Baetselier, A. A New Production Method for Glucose Oxidase. J. Biotechnol. 1992, 24, 141–148. [Google Scholar] [CrossRef]
- Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R. Semi-Rational Engineering of Cellobiose Dehydrogenase for Improved Hydrogen Peroxide Production. Microb. Cell Fact. 2013, 12, 38. [Google Scholar] [CrossRef]
- Blažić, M.; Balaž, A.M.; Tadić, V.; Draganić, B.; Ostafe, R.; Fischer, R.; Prodanović, R. Protein Engineering of Cellobiose Dehydrogenase from Phanerochaete chrysosporium in Yeast Saccharomyces cerevisiae InvSc1 for Increased Activity and Stability. Biochem. Eng. J. 2019, 146, 179–185. [Google Scholar] [CrossRef]
- Banerjee, S.; Roy, A. Molecular Cloning, Characterisation and Expression of a Gene Encoding Cellobiose Dehydrogenase from Termitomyces clypeatus. Gene Rep. 2021, 23, 101063. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, H.; Liang, Q.; Zhou, J.; Li, J.; Du, G.; Chen, J. Stepwise Optimization of Inducible Expression System for the Functional Secretion of Horseradish Peroxidase in Saccharomyces cerevisiae. J. Agric. Food Chem. 2023, 71, 4059–4068. [Google Scholar] [CrossRef] [PubMed]
- Morawski, B.; Lin, Z.; Cirino, P.; Joo, H.; Bandara, G.; Arnold, F.H. Functional Expression of Horseradish Peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Eng. Des. Sel. 2000, 13, 377–384. [Google Scholar] [CrossRef]
- Bulter, T.; Alcalde, M.; Sieber, V.; Meinhold, P.; Schlachtbauer, C.; Arnold, F.H. Functional Expression of a Fungal Laccase in Saccharomyces cerevisiae by Directed Evolution. Appl. Environ. Microbiol. 2003, 69, 987–995. [Google Scholar] [CrossRef]
- Iimura, Y.; Sonoki, T.; Habe, H. Heterologous Expression of Trametes versicolor Laccase in Saccharomyces cerevisiae. Protein Expr. Purif. 2018, 141, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Kurose, T.; Saito, Y.; Kimata, K.; Nakagawa, Y.; Yano, A.; Ito, K.; Kawarasaki, Y. Secretory Expression of Lentinula Edodes Intracellular Laccase by Yeast High-Cell-Density System: Sub-Milligram Production of Difficult-to-Express Secretory Protein. J. Biosci. Bioeng. 2014, 117, 659–663. [Google Scholar] [CrossRef]
- Aza, P.; Molpeceres, G.; Ruiz-Dueñas, F.J.; Camarero, S. Heterologous Expression, Engineering and Characterization of a Novel Laccase of Agrocybe Pediades with Promising Properties as Biocatalyst. J. Fungi 2021, 7, 359. [Google Scholar] [CrossRef] [PubMed]
- Klonowska, A.; Gaudin, C.; Asso, M.; Fournel, A.; Réglier, M.; Tron, T. LAC3, a New Low Redox Potential Laccase from Trametes sp. Strain C30 Obtained as a Recombinant Protein in Yeast. Enzym. Microb. Technol. 2005, 36, 34–41. [Google Scholar] [CrossRef]
- Antošová, Z.; Herkommerová, K.; Pichová, I.; Sychrová, H. Efficient Secretion of Three Fungal Laccases from Saccharomyces cerevisiae and Their Potential for Decolorization of Textile Industry Effluent—A Comparative Study. Biotechnol. Prog. 2018, 34, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Tsukuda, Y.; Kawai, Y.; Tsukamoto, A.; Sugiura, J.; Sakaino, M.; Kita, Y. Cloning, Sequence Analysis, and Expression of Ligninolytic Phenoloxidase Genes of the White-Rot Basidiomycete Coriolus hirsutus. J. Biol. Chem. 1990, 265, 15224–15230. [Google Scholar] [CrossRef] [PubMed]
- Cassland, P.; Jönsson, L.J. Characterization of a Gene Encoding Trametes Versicolor Laccase A and Improved Heterologous Expression in Saccharomyces cerevisiae by Decreased Cultivation Temperature. Appl. Microbiol. Biotechnol. 1999, 52, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Aza, P.; Molpeceres, G.; de Salas, F.; Camarero, S. Design of an Improved Universal Signal Peptide Based on the α-Factor Mating Secretion Signal for Enzyme Production in Yeast. Cell. Mol. Life Sci. 2021, 78, 3691–3707. [Google Scholar] [CrossRef]
- Ogata, K.; Nishikawa, H.; Ohsugi, M. A Yeast Capable of Utilizing Methanol. Agric. Biol. Chem. 1969, 33, 1519–1520. [Google Scholar] [CrossRef]
- Vijayakumar, V.E.; Venkataraman, K. A Systematic Review of the Potential of Pichia pastoris (Komagataella phaffii) as an Alternative Host for Biologics Production. Mol. Biotechnol. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Çalık, P.; Ata, Ö.; Güneş, H.; Massahi, A.; Boy, E.; Keskin, A.; Öztürk, S.; Zerze, G.H.; Özdamar, T.H. Recombinant Protein Production in Pichia pastoris under Glyceraldehyde-3-Phosphate Dehydrogenase Promoter: From Carbon Source Metabolism to Bioreactor Operation Parameters. Biochem. Eng. J. 2015, 95, 20–36. [Google Scholar] [CrossRef]
- Walsh, G.; Walsh, E. Biopharmaceutical Benchmarks 2022. Nat. Biotechnol. 2022, 40, 1722–1760. [Google Scholar] [CrossRef]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein Expression in Pichia pastoris: Recent Achievements and Perspectives for Heterologous Protein Production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Wu, J.C. Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications. ChemBioChem 2018, 19, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Guo, Y.; Bao, X.; Hao, J.; Sun, G.; Peng, B.; Bi, W. Expression of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris SMD1168. Biotechnol. Biotechnol. Equip. 2016, 30, 998–1005. [Google Scholar] [CrossRef]
- Martínez-Mora, E.; González-González, M.D.R.; Zarate, X.; Carranza-Rosales, P.; Ramírez-Cabrera, M.A.; Balderas-Rentería, I.; Arredondo-Espinoza, E. Enhanced in Vitro Anticancer Activity of Yeast Expressed Recombinant Glucose Oxidase versus Commercial Enzyme. Appl. Microbiol. Biotechnol. 2021, 105, 2377–2384. [Google Scholar] [CrossRef]
- Belyad, F.; Karkhanei, A.A.; Raheb, J. Expression, Characterization and One Step Purification of Heterologous Glucose Oxidase Gene from Aspergillus niger ATCC 9029 in Pichia pastoris. EuPA Open Proteom. 2018, 19, 1–5. [Google Scholar] [CrossRef]
- Kovačević, G.; Blažić, M.; Draganić, B.; Ostafe, R.; Gavrović-Jankulović, M.; Fischer, R.; Prodanović, R. Cloning, Heterologous Expression, Purification and Characterization of M12 Mutant of Aspergillus niger Glucose Oxidase in Yeast Pichia pastoris KM71H. Mol. Biotechnol. 2014, 56, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Bey, M.; Berrin, J.-G.; Poidevin, L.; Sigoillot, J.-C. Heterologous Expression of Pycnoporus cinnabarinus Cellobiose Dehydrogenase in Pichia pastoris and Involvement in Saccharification Processes. Microb. Cell Fact. 2011, 10, 113. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, Z.; Kasuga, T. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and Its Purification and Characterization. Protein Expr. Purif. 2011, 75, 63–69. [Google Scholar] [CrossRef]
- Acar, M.; Abul, N.; Yildiz, S.; Taskesenligil, E.D.; Gerni, S.; Unver, Y.; Kalin, R.; Ozdemir, H. Affinity-Based and in a Single Step Purification of Recombinant Horseradish Peroxidase A2A Isoenzyme Produced by Pichia pastoris. Bioprocess. Biosyst. Eng. 2023, 46, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Krainer, F.W.; Darnhofer, B.; Birner-Gruenberger, R.; Glieder, A. Recombinant Production of a Peroxidase-Protein G Fusion Protein in Pichia pastoris. J. Biotechnol. 2016, 219, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Kontro, J.; Lyra, C.; Koponen, M.; Kuuskeri, J.; Kähkönen, M.A.; Wallenius, J.; Wan, X.; Sipilä, J.; Mäkelä, M.R.; Nousiainen, P.; et al. Production of Recombinant Laccase From Coprinopsis cinerea and Its Effect in Mediator Promoted Lignin Oxidation at Neutral PH. Front. Bioeng. Biotechnol. 2021, 9, 767139. [Google Scholar] [CrossRef] [PubMed]
- Ardila-Leal, L.D.; Albarracín-Pardo, D.A.; Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Cardozo-Bernal, A.M.; Quevedo-Hidalgo, B.E.; Pedroza-Rodríguez, A.M.; Díaz-Rincón, D.J.; Rodríguez-López, A.; et al. Media Improvement for 10 L Bioreactor Production of RPOXA 1B Laccase by P. pastoris. 3 Biotech. 2019, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Meinander, N.Q.; Jönsson, L.J. Fermentation Strategies for Improved Heterologous Expression of Laccase in Pichia pastoris. Biotechnol. Bioeng. 2002, 79, 438–449. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.; O’Brien, M.; McClean, K.; Dobson, A. Optimisation of the Expression of a Trametes versicolor Laccase Gene in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 2002, 29, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Pei, J.; Zhao, L.; Xie, J.; Cao, F.; Wang, G. Overexpression and Characterization of Laccase from Trametes versicolor in Pichia pastoris. Appl. Biochem. Microbiol. 2014, 50, 140–147. [Google Scholar] [CrossRef]
- Avelar, M.; Olvera, C.; Aceves-Zamudio, D.; Folch, J.L.; Ayala, M. Recombinant Expression of a Laccase from Coriolopsis gallica in Pichia pastoris Using a Modified α-Factor Preproleader. Protein Expr. Purif. 2017, 136, 14–19. [Google Scholar] [CrossRef]
- Fan, F.; Zhuo, R.; Sun, S.; Wan, X.; Jiang, M.; Zhang, X.; Yang, Y. Cloning and Functional Analysis of a New Laccase Gene from Trametes sp. 48424 Which Had the High Yield of Laccase and Strong Ability for Decolorizing Different Dyes. Bioresour. Technol. 2011, 102, 3126–3137. [Google Scholar] [CrossRef]
- Xu, G.; Wang, J.; Yin, Q.; Fang, W.; Xiao, Y.; Fang, Z. Expression of a Thermo- and Alkali-Philic Fungal Laccase in Pichia pastoris and Its Application. Protein Expr. Purif. 2019, 154, 16–24. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Engineering Strategies for Enhanced Production of Protein and Bio-Products in Pichia pastoris: A Review. Biotechnol. Adv. 2018, 36, 182–195. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Z.; Zhang, Y.; Huang, H.; Li, M.; Zhou, L.; Tang, Y.; Yao, B.; Zhang, W. High-Level Expression of the Penicillium notatum Glucose Oxidase Gene in Pichia pastoris Using Codon Optimization. Biotechnol. Lett. 2012, 34, 507–514. [Google Scholar] [CrossRef]
- Yu, S.; Miao, L.; Huang, H.; Li, Y.; Zhu, T. High-Level Production of Glucose Oxidase in Pichia pastoris: Effects of Hac1p Overexpression on Cell Physiology and Enzyme Expression. Enzym. Microb. Technol. 2020, 141, 109671. [Google Scholar] [CrossRef]
- Dietzsch, C.; Spadiut, O.; Herwig, C. A Dynamic Method Based on the Specific Substrate Uptake Rate to Set up a Feeding Strategy for Pichia pastoris. Microb. Cell Fact. 2011, 10, 14. [Google Scholar] [CrossRef]
- Dietzsch, C.; Spadiut, O.; Herwig, C. A Fast Approach to Determine a Fed Batch Feeding Profile for Recombinant Pichia pastoris Strains. Microb. Cell Fact. 2011, 10, 85. [Google Scholar] [CrossRef]
- Antošová, Z.; Sychrová, H. Yeast Hosts for the Production of Recombinant Laccases: A Review. Mol. Biotechnol. 2016, 58, 93–116. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, L.J.; Saloheimo, M.; Penttilä, M. Laccase from the White-Rot Fungus Trametes versicolor: CDNA Cloning of Lcc1 and Expression in Pichia pastoris. Curr. Genet. 1997, 32, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Markova, E.A.; Shaw, R.E.; Reynolds, C.R. Prediction of Strain Engineerings That Amplify Recombinant Protein Secretion through the Machine Learning Approach MaLPHAS. Eng. Biol. 2022, 6, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Waltenspühl, Y.; Jeliazkov, J.R.; Kummer, L.; Plückthun, A. Directed Evolution for High Functional Production and Stability of a Challenging G Protein-Coupled Receptor. Sci. Rep. 2021, 11, 8630. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Shao, J.; Zhu, Z.; Zhang, L. Structure-Driven Protein Engineering for Production of Valuable Natural Products. Trends Plant Sci. 2023, 28, 460–470. [Google Scholar] [CrossRef]
- Iizuka, R.; Tahara, K.; Matsueda, A.; Tsuda, S.; Yoon, D.H.; Sekiguchi, T.; Shoji, S.; Funatsu, T. Selection of Green Fluorescent Proteins by in vitro Compartmentalization Using Microbead-Display Libraries. Biochem. Eng. J. 2022, 187, 108627. [Google Scholar] [CrossRef]
- Hillson, N.; Caddick, M.; Cai, Y.; Carrasco, J.A.; Chang, M.W.; Curach, N.C.; Bell, D.J.; Le Feuvre, R.; Friedman, D.C.; Fu, X.; et al. Building a Global Alliance of Biofoundries. Nat. Commun. 2019, 10, 2040. [Google Scholar] [CrossRef] [PubMed]
- Zrimec, J.; Börlin, C.S.; Buric, F.; Muhammad, A.S.; Chen, R.; Siewers, V.; Verendel, V.; Nielsen, J.; Töpel, M.; Zelezniak, A. Deep Learning Suggests That Gene Expression Is Encoded in All Parts of a Co-Evolving Interacting Gene Regulatory Structure. Nat. Commun. 2020, 11, 6141. [Google Scholar] [CrossRef] [PubMed]
- Avsec, Ž.; Agarwal, V.; Visentin, D.; Ledsam, J.R.; Grabska-Barwinska, A.; Taylor, K.R.; Assael, Y.; Jumper, J.; Kohli, P.; Kelley, D.R. Effective Gene Expression Prediction from Sequence by Integrating Long-Range Interactions. Nat. Methods 2021, 18, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhou, Z.; Liu, H.; Davuluri, R. V DNABERT: Pre-Trained Bidirectional Encoder Representations from Transformers Model for DNA-Language in Genome. Bioinformatics 2021, 37, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, F.; Sánchez, B.J.; Zhu, Z.; Li, G.; Domenzain, I.; Marcišauskas, S.; Anton, P.M.; Lappa, D.; Lieven, C.; et al. A Consensus S. Cerevisiae Metabolic Model Yeast8 and Its Ecosystem for Comprehensively Probing Cellular Metabolism. Nat. Commun. 2019, 10, 3586. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Ishigami, M.; Terai, G.; Nakamura, Y.; Hashiba, N.; Nishi, T.; Nakazawa, H.; Hasunuma, T.; Asai, K.; Umetsu, M.; et al. A Streamlined Strain Engineering Workflow with Genome-Wide Screening Detects Enhanced Protein Secretion in Komagataella phaffii. Commun. Biol. 2022, 5, 561. [Google Scholar] [CrossRef] [PubMed]
- Munro, L.J.; Kell, D.B. Intelligent Host Engineering for Metabolic Flux Optimisation in Biotechnology. Biochem. J. 2021, 478, 3685–3721. [Google Scholar] [CrossRef]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.O.; Feist, A.M. The Emergence of Adaptive Laboratory Evolution as an Efficient Tool for Biological Discovery and Industrial Biotechnology. Metab. Eng. 2019, 56, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Aza, P.; De Salas, F.; Molpeceres, G.; Rodríguez-Escribano, D.; De La Fuente, I.; Camarero, S. Protein Engineering Approaches to Enhance Fungal Laccase Production in S. cerevisiae. Int. J. Mol. Sci. 2021, 22, 1157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, W.; Qian, J. Hypersecretory Production of Glucose Oxidase in Pichia pastoris through Combinatorial Engineering of Protein Properties, Synthesis, and Secretion. Biotechnol. Bioeng. 2023, 121, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Wu, M.; Wang, H.-B.; Naranmandura, H.; Chen, S.-Q. The Effect of Gene Copy Number and Co-Expression of Chaperone on Production of Albumin Fusion Proteins in Pichia pastoris. Appl. Microbiol. Biotechnol. 2012, 96, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.; Ding, L.; Wei, D.; Zhou, H.; Chu, J.; Zhang, S.; Qian, J. Screening Endogenous Signal Peptides and Protein Folding Factors to Promote the Secretory Expression of Heterologous Proteins in Pichia pastoris. J. Biotechnol. 2019, 306, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Terai, G.; Ishigami, M.; Hashiba, N.; Nakamura, Y.; Bamba, T.; Kumokita, R.; Hasunuma, T.; Asai, K.; Ishii, J.; et al. Exchange of Endogenous and Heterogeneous Yeast Terminators in Pichia pastoris to Tune MRNA Stability and Gene Expression. Nucleic Acids Res. 2020, 48, 13000–13012. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Björk, S.M.; Huang, M.; Liu, Q.; Campbell, K.; Nielsen, J.; Joensson, H.N.; Petranovic, D. RNAi Expression Tuning, Microfluidic Screening, and Genome Recombineering for Improved Protein Production in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2019, 116, 9324–9332. [Google Scholar] [CrossRef] [PubMed]
- Pekarsky, A.; Veiter, L.; Rajamanickam, V.; Herwig, C.; Grünwald-Gruber, C.; Altmann, F.; Spadiut, O. Production of a Recombinant Peroxidase in Different Glyco-Engineered Pichia pastoris Strains: A Morphological and Physiological Comparison. Microb. Cell Fact. 2018, 17, 183. [Google Scholar] [CrossRef]
- Hyka, P.; Züllig, T.; Ruth, C.; Looser, V.; Meier, C.; Klein, J.; Melzoch, K.; Meyer, H.-P.; Glieder, A.; Kovar, K. Combined Use of Fluorescent Dyes and Flow Cytometry To Quantify the Physiological State of Pichia pastoris during the Production of Heterologous Proteins in High-Cell-Density Fed-Batch Cultures. Appl. Environ. Microbiol. 2010, 76, 4486–4496. [Google Scholar] [CrossRef]
- Alfasi, S.; Sevastsyanovich, Y.; Zaffaroni, L.; Griffiths, L.; Hall, R.; Cole, J. Use of GFP Fusions for the Isolation of Escherichia coli Strains for Improved Production of Different Target Recombinant Proteins. J. Biotechnol. 2011, 156, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Totaro, D.; Radoman, B.; Schmelzer, B.; Rothbauer, M.; Steiger, M.G.; Mayr, T.; Sauer, M.; Ertl, P.; Mattanovich, D. Microscale Perfusion-Based Cultivation for Pichia pastoris Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Biotechnol. J. 2021, 16, e2000215. [Google Scholar] [CrossRef]
- Li, Q.; Lu, J.; Liu, J.; Li, J.; Zhang, G.; Du, G.; Chen, J. High-Throughput Droplet Microfluidics Screening and Genome Sequencing Analysis for Improved Amylase-Producing Aspergillus oryzae. Biotechnol. Biofuels Bioprod. 2023, 16, 185. [Google Scholar] [CrossRef] [PubMed]
- Scheele, R.A.; Lindenburg, L.H.; Petek, M.; Schober, M.; Dalby, K.N.; Hollfelder, F. Droplet-Based Screening of Phosphate Transfer Catalysis Reveals How Epistasis Shapes MAP Kinase Interactions with Substrates. Nat. Commun. 2022, 13, 844. [Google Scholar] [CrossRef] [PubMed]
- Femmer, C.; Bechtold, M.; Panke, S. Semi-rational Engineering of an Amino Acid Racemase That Is Stabilized in Aqueous/Organic Solvent Mixtures. Biotechnol. Bioeng. 2020, 117, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Napiorkowska, M.; Pestalozzi, L.; Panke, S.; Held, M.; Schmitt, S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. Small 2021, 17, e2005523. [Google Scholar] [CrossRef]
- Ito, Y.; Sasaki, R.; Asari, S.; Yasuda, T.; Ueda, H.; Kitaguchi, T. Efficient Microfluidic Screening Method Using a Fluorescent Immunosensor for Recombinant Protein Secretions. Small 2023, 19, e2207943. [Google Scholar] [CrossRef]
Source | Variant of Oxidoreductase Enzyme | Host Strain; Vector | Promoter | Inducer | Signal Sequence | Additional Information | Enzyme Yield | Ref. |
---|---|---|---|---|---|---|---|---|
GOx | ||||||||
A. niger | NR | 2805; YEp352 | GAL1 | 1% galactose | ss of α-factor | NR | 32 a U/mL | [36] |
A. oryzae | NR | 2805 | GAL-10 | NR | α-amylase signal sequence | 30 °C, 150 rpm, feedback-controlled fed-batch | NR | [37] |
A. niger | NR | 2805; Yep352 | Hybrid ADH2-GPD | 2% glucose | ss of α-factor | 1.5% EtOH | 260 a U/mL | [36] |
A. niger | NR | GRF181 pSGO2 | ADH2-GPD | 8% sucrose | Native | Shake flask; 28 °C; 200 h | 106 a U/mL | [38] |
CDH | ||||||||
M. thermophilum | Wild type | BJ5465; pJRoC30 | GAL1 | 2% galactose | Native | Deep-well plate (500 µL of medium); 30 °C; 5 days | 50 b U/L | [39] |
M. thermophilum | Wild type | BJ5465; pJRoC30 | GAL1 | 2% galactose | ss of α factor | Deep-well plate (500 µL of medium); 30 °C; 5 days | 16 b U/L | [39] |
P. chrysosporium | U46081.1 | InvSC1; pYES2 | GAL1 | Galactose | Native | Shake flask; 30 °C; 16 h | NR | [40] |
T. clypeatus | GAFV01008428.1 | BY4742; pFL61 | PGK | No | No | NR type of cultivation; Czapek medium, 3 days | 0.039 b U/mg | [41] |
HRP | ||||||||
Horseradish | Wild type | SIP-Ost1 (Δ44–70); modified pESC-URA | TDH3 | pre-Ost1 | Fermenter 5 L (batch fermentation) | 13,506 c U/L | [42] | |
Horseradish | HRP 3-17E12 | BJ5465; pYEX-S1 | PGK1 | No | NR | Expression time 25 h | about 250 c U/L | [43] |
LAC | ||||||||
M. thermophila | MtL | BJ5465; pJRoC3 | NR | NR | NR | Shake flask 2.8 L; 0.005 mM CuSO4 30 °C; 1 day | 0.6 d U/L | [44] |
M. thermophila | T2 mutant | BJ5465; pJRoC3 | NR | NR | NR | Shake flask 2.8 L; 0.005 mM CuSO4; 30 °C; 1 day | 102 d U/L | [44] |
T. versicolor | Cvl3 | BY2777; pYES2 | GAL1 | 4% Galactose | Native | Shake flask 0.3 L; 0.5 mM CuSO4; 20 °C; 6 days | 45 e U/L | [45] |
L. edodes | Lcc4 | FGY217; pBG13 | GAL1 | 4% Galactose | Native | Fermentor 4 L; 0.5 mM CuSO4; 20 °C; 7 days | 10 e U/L | [46] |
A. pediades | ApL | BJ5465; pJRoC30 | GAL1 | 2.2% Galactose | α9H2 signal peptide | Shake flask 0.1 L; 0.4 mM CuSO4; 20 °C; 4 days | 280 e U/L | [47] |
Trametes sp. C30 | Clac1, 2, 3 | W303-1A; YIp351 | PGK1 | No | ss of SUC2 gene product | Fermentor 3 L; 1 mM CuSO4; 28 °C; 3 days | 1200 d U/L | [48] |
M. thermophila | T2 mutant | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 30 °C; 1 day; 0.8% alanine | 6.52 e U/L | [49] |
T. versicolor | Lcc1 | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 30 °C; 1 day; 0.8% alanine | 0.45 e U/L | [49] |
T. trogii | Lcc1 | BW31a; pVT-100U | ADH1 | No | Native | Shake flask 0.25 L; 0.6 mM CuSO4; 20 °C; 14 days; 0.8% alanine | 14.12 e U/L | [49] |
Source | Variant of Oxidoreductase Enzyme | Host Strain; Vector | Promoter | Inducer | Signal Sequence | Additional Information | Enzyme Yield | Ref. |
---|---|---|---|---|---|---|---|---|
GOx | ||||||||
A. niger | GOx accc30161 | SMD1168;pGAPZαA | GAP | NR | ss of α-factor | 30 °C; pH 6 | 107.18 a U/mL | [59] |
A. niger | GOxM | SMD1168; pPIC3.5 | AOX1 | 1% MeOH | 30 °C; 3 days, 220 rpm | 26.93 a U/mL | [60] | |
A. niger ATCC 9029 | - | GS115; pPIC9 | AOX1 | 1% MeOH | 28 °C; 225 rpm | NR | [61] | |
A. niger | M12 mutant | KM71H; pPICZαA | AOX | 0.5% MeOH | Proalpha sequence | Nine days of fermentation | 17.5 b U/mL | [62] |
CDH | ||||||||
M. thermophilum | N700S mutant | X33; pPICZαA | AOX1 | 0.5% MeOH | ss of α-factor & propeptide | Fermentor 7 L; 30 °C; 5 days | 1800 c U/L | [39] |
P. cinnabarinus | Wild type | X33; pPICZαA | AOX1 | 3% MeOH | ss of α-factor | Fermentor 1 L; 4 days | 7800 c U/L | [63] |
N. crassa strain FGSC 2489 | NC-cdh1 | X33; pPICZαB | AOX1 | 1% MeOH | ss of α-factor | Shake flask 0.25 L; 30 °C; 1 day | 7451 c U/L | [64] |
P. chrysosporium | Mutant | KM71H; pPICZαA | AOX1 | 0.5% MeOH | ss of α-factor | Shake flask; 28 °C; 6 days | 950 c U/L | [64] |
HRP | ||||||||
Horseradish | wild type | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss of α-factor | 30 °C; BMGY medium supplemented with 1% casamino acids; BMMY medium supplemented with 1.0 mM vitamin B1, 1.0 mM δ-ALA, and trace element mix; the highest yield in 80–90 h post-induction | 377 d U/mg | [43] |
Horseradish | mutant HRP 2-13A10 | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss of α-factor | Same as for wild-type | 2053 d U/mg | [43] |
Horseradish | mutant HRP 3-17E12 | X-33; pPICZαB | AOX1 | 0.5% MeOH | ss of α-factor | Same as for wild-type | 1049 d U/mg | [43] |
Horseradish | A2A isoenzyme | X-33; pPICZαC | AOX1 | 0.5% MeOH | α-MF-pre-pro signal peptide | BMMY medium supplemented with 1% casamino acids and 1% sorbitol | 25.63 a U/mg | [65] |
Horseradish | HRP-SpG | PpFWK3; pPpT4_alpha_S | AOX1 | MeOH | NR | 136 h of methanol induction | 113 d mg/L | [66] |
LAC | ||||||||
C. cinerea | Lcc9 | X33; pGAPZαA | GAP | 0.5% glucose | ss of α-factor | Shake flasks 0.25 L; 0.3 mM CuSO4; 20 °C; 4 days; 0.8% alanine | 12.8 f µkat/L | [67] |
P. ostreatus | rPOXA 1B | X33; pGAPZαA | GAP | 0.5% glucose | ss of α-factor | Bioreactor 10 L; 1 mM CuSO4; 2% peptone; 1.5% yeast extract; 170 h; geometry of flask | 3159.93 f U/L | [68] |
T. versicolor | Lcc1 | SMD 1168; pHIL-D2 | AOX1 | 0.5% MeOH | Shake flasks 1 L; 0.1 mM CuSO4; 20 °C; 3 days of induction | 11,500 f U/L | [69] | |
T. versicolor | Lcc1 | SMD 1168; pHIL-D2 | AOX1 | 0.5% MeOH | BioFlo III fermentor; 0.1 mM CuSO4; 20 °C; 8.5 days | 140 f U/L | [69] | |
T. versicolor | Lcc1 | GS115; pPIC3.5 | AOX1 | 1% MeOH | Shake flasks (0.1 L; 0.2 mM CuSO4; 22 °C; initial pH 6; 0.8% alanine: | 23.9 f U/L | [70] | |
T. versicolor | LccA | X33; pPICZαB | AOX | 0.6% MeOH | ss of α-factor | Shake flask (0.05 L of medium); 0.5 mM CuSO4; 28 °C; 16 days; initial pH 7; | 11.972 f U/L | [71] |
T. versicolor | LccA | X33; X33; pPICZαB | AOX | 0.6% MeOH | ss of α-factor | 5 L fermenter; 0.5 mM CuSO4; 28 °C; 4.2 days; initial pH 7; | 18.123 f U/L | [71] |
C. gallica | LcCg | X33; pPICZB | AOX | 1% MeOH | Modified α-factor preproleader | Fernbach flask; 0.5 mM CuSO4; 28 °C; 12 days; initial pH 6; 0.8% alanine | 250 e U/L | [72] |
Trameters sp. 48424 | Lac48424-1 | GS115; pPIC3.5K | AOX | 0.5% MeOH | Native | Shake flasks; 0.3 mM CuSO4; 20 °C; 7 days; initial pH 6; 0.8% alanine | 104.45 f U/L | [73] |
C. cinerea | Lcc9 | GS115; pPIC9K | AOX | 0.5% MeOH | Native | Shake flasks 0.5 L; 0.3 mM CuSO4; 28 °C; 10 days; initial pH 6.5; 0.8% alanine | 3138 ± 62 f U/L | [74] |
C. cinerea | Lcc9 | X33; pPICZαA | AOX | 0.5% MeOH | ss of α-factor | Shake flasks 0.25 L; 0.3 mM CuSO4; 20 °C; 7 days; 0.8% alanine | 9.3 f µkat/L | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crnoglavac Popović, M.; Stanišić, M.; Prodanović, R. State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae. Fermentation 2024, 10, 93. https://doi.org/10.3390/fermentation10020093
Crnoglavac Popović M, Stanišić M, Prodanović R. State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae. Fermentation. 2024; 10(2):93. https://doi.org/10.3390/fermentation10020093
Chicago/Turabian StyleCrnoglavac Popović, Milica, Marija Stanišić, and Radivoje Prodanović. 2024. "State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae" Fermentation 10, no. 2: 93. https://doi.org/10.3390/fermentation10020093
APA StyleCrnoglavac Popović, M., Stanišić, M., & Prodanović, R. (2024). State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae. Fermentation, 10(2), 93. https://doi.org/10.3390/fermentation10020093