Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Strains
2.2. Preparation of Strain Seed Liquid
2.3. Screening of Fermentation Strains
2.4. Optimization of Solid-State Fermentation Process of R. ternate
2.4.1. Single-Factor Experiments
2.4.2. Response Surface Method Experiments
2.5. Determination of Active Constituent Content
2.5.1. Total WSE and ESE Content
2.5.2. Total Polysaccharides Content
2.5.3. Total Flavonoids Content
2.5.4. Total Saponins Content
2.5.5. Total Phenols Content
2.5.6. Total Organic Acid Content
2.5.7. Amino Acid Analysis
2.6. Antioxidant Activity
2.7. Hypoglycemic Activity
2.8. Model Verification and Statistical Analysis
3. Results and Analysis
3.1. The Growth Curves of R12 and S4
3.2. Screening of Fermentative Strains
3.3. Single-Factor Experiment of Fermentation Process Optimization
3.3.1. Effects of Sieve Size on the Yield of ESE
3.3.2. Effect of Liquid-to-Material Ratio on the Yield of ESE
3.3.3. Effect of Fermentation Temperature on the Yield of ESE
3.3.4. Effect of Inoculation Amount on the Yield of ESE
3.4. Response Surface Method for Fermentation Process Optimization
3.5. Changes in the Contents of Active Ingredients before and after Fermentation
3.6. Changes in Antioxidant Capacity of ESE before and after Fermentation
3.7. Changes in Hypoglycemic Activity of ESE before and after Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Part 1: Medicinal Materials and Pieces; Chemical Industry Press: Beijing, China, 2020; pp. 333–334. ISBN 978-7-5214-1574-2. [Google Scholar]
- Huang, X.; Zhao, Y.; Jin, X. Structural characterisation of a polysaccharide from Radix Ranunculus ternati. Iran. J. Pharm. Res. 2014, 13, 1403. [Google Scholar]
- Wang, A.W.; Tian, J.K.; Yuan, J.R.; Wu, L.M. The study survey and expectation of Chinese drug Radix Ranuunculi ternati. Chin. Pharm. 2005, 14, 25–27. [Google Scholar]
- Niu, L.; Zhou, Y.; Sun, B.; Hu, J.; Kong, L.; Duan, S. Inhibitory effect of saponins and polysaccharides from Radix ranunculi ternati on human gastric cancer BGC823 cells. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 561–566. [Google Scholar] [PubMed]
- Zhang, L.; Li, R.; Li, M.; Qi, Z.; Tian, J. In vitro and in vivo study of anti-tuberculosis effect of extracts isolated from Ranunculi ternati Radix. Sarcoidosis Vasc. Diffus. Lung Dis. Off. J. WASOG 2015, 31, 336–342. [Google Scholar]
- Zhan, Z.; Feng, Z.; Yang, Y.; Li, L.; Jiang, J.; Zhang, P. Ternatusine A, a new pyrrole derivative with an epoxyoxepino ring from Ranunculus ternatus. Org. Lett. 2013, 15, 1970–1973. [Google Scholar] [CrossRef]
- Fang, M.; Shinomiya, T.; Nagahara, Y. Cell death induction by Ranunculus ternatus extract is independent of mitochondria and dependent on Caspase-7. 3 Biotech 2020, 10, 123. [Google Scholar] [CrossRef]
- Sun, D.; Xie, H.B.; Xia, Y.Z. A study on the inhibitory effect of polysaccharides from Radix ranunculus ternate on human breast cancer MCF-7 cell lines. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Cheng, F.; Li, W.; Yu, Q.; Ma, C.; Zou, Y.; Xu, T.; Liu, S.; Zhang, S.; Wang, Q. Enhancement of anti-inflammatory effect of cattle bile by fermentation and its inhibition of neuroinflammation on microglia by inhibiting NLRP3 inflammasome. J. Biosci. Bioeng. 2022, 133, 146–154. [Google Scholar] [CrossRef]
- Li, C.; Ma, L.; Wang, L.; Zhang, Z.; Chen, Y.; Chen, J.; Jiang, Q.; Song, Z.; He, X.; Tan, B.; et al. Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis. Fermentation 2023, 9, 75. [Google Scholar] [CrossRef]
- Lee, S.O.; Choi, S.Z.; Choi, S.U.; Ryu, S.Y.; Lee, K.R. Phytochemical constituents of the aerial parts from Aster hispidus. Nat. Prod. Sci. 2005, 10, 335–340. [Google Scholar]
- Kaul, S.; Sharma, T.; Dhar, M.K. “Omics” Tools for understanding the plant-endophyte interactions. Front. Plant Sci. 2016, 7, 955. [Google Scholar] [CrossRef] [PubMed]
- Saikkonen, K.; Wäli, P.; Helander, M.; Faeth, S.H. Evolution of endophyte–plant symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef]
- Toofanee, S.B.; Dulymamode, R. Fungal endophytes associated with Cordemoya integrifolia. Fungal Divers. 2002, 11, 169–175. [Google Scholar]
- Chithra, S.; Jasim, B.; Sachidanandan, P.; Jyothis, M.; Radhakrishnan, E.K. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 2014, 21, 534–540. [Google Scholar] [CrossRef]
- Jiang, S.; Duan, J.A.; Tao, J.H.; Yan, H.; Zheng, J.B. Ecological distribution and elicitor activities of endophytic fungi in Changium smyrnioides. Chin. Tradit. Herb. Drugs 2010, 41, 121–125. [Google Scholar]
- Qiao, X.R.; Wang, Z.X.; Ye, R.; Chen, Q. Study on antioxidant activity and optimization of fermentation conditions of extracellular polysaccharide produced by endophytic fungus Radix ranunculi ternate. Cereals Oils 2022, 35, 131–136. [Google Scholar]
- Zhang, A.; Shen, Y.; Cen, M.; Hong, X.; Shao, Q.; Chen, Y.; Zheng, B. Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins. Ind. Crops Prod. 2019, 133, 111–117. [Google Scholar] [CrossRef]
- Jing, C.L.; Dong, X.F.; Tong, J.M. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method. Molecules 2015, 20, 15550–15571. [Google Scholar] [CrossRef]
- Hu, X.; Tang, J.R.; Zhang, G.L.; Deng, J.; Kan, H.; Zhang, Y.J.; Zhao, P.; Liu, Y. Optimization of extraction process and antioxidant activities of saponins from Camellia fascicularis leaves. J. Food Meas. Charact. 2021, 15, 1889–1898. [Google Scholar] [CrossRef]
- Nag, S.; Sit, N. Optimization of ultrasound assisted enzymatic extraction of polyphenols from pomegranate peels based on phytochemical content and antioxidant property. J. Food Meas. Charact. 2018, 12, 1734–1743. [Google Scholar] [CrossRef]
- Yang, X.; Xu, D. Determination of organic acid content of R. ternate from different origins. Anhui Med. 2011, 15, 1214–1215. [Google Scholar]
- Ijarotimi, O.S.; Olopade, A.J. Determination of amino Acid content and protein quality of complementary food produced from locally available food materials in ondo state, Nigeria. Malays. J. Nutr. 2009, 15, 87–95. [Google Scholar]
- Chen, S.H.; Chen, H.X.; Tian, J.G.; Wang, Y.W.; Xing, L.S.; Wang, J. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides. Carbohydr. Polym. 2013, 98, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.L.; Jiang, C.J. Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydr. Polym. 2011, 84, 495–502. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, Z.; Wu, L.; Yin, C. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products. World J. Microbiol. Biotechnol. 2014, 30, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Lee, D.S.; Kang, Y.M.; Son, K.T.; Jeon, Y.J.; Kim, Y.M. Application of yeast Candida utilis to ferment Eisenia bicyclis for enhanced antibacterial effect. Appl. Biochem. Biotechnol. 2013, 171, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fu, X.; Zhang, R.; Li, X.; Li, Y.; Chu, X. Exploring the Effects of Solid-State Fermentation on Polyphenols in Acanthopanax senticosus Based on Response Surface Methodology and Nontargeted Metabolomics Techniques. J. Food Biochem. 2023, 2023, 6711132. [Google Scholar] [CrossRef]
- Hua, H. Research on the Process of Fermentation to Enhance the Flavonoids and Anti-Radiation Function of Serratia marcescens. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2018. [Google Scholar]
- Maurya, D.P.; Singh, D.; Pratap, D.; Maurya, J.P. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol. 2012, 33, 5. [Google Scholar]
- Jin, Y.L.; Ding, F.; Shen, W.L.; Fang, Y.; Yi, Z.L.; Yang, L.; Zhao, H. Production of microbiological protein feed from sweet potato (Ipomoea batatas L. lam) residue by co-cultivation saccharomyces cerevisiae and Candida utilis. JAPS J. Anim. Plant Sci. 2023, 33, 592–600. [Google Scholar]
- Cao, C.Q. Suggestion on Improvement of Impurify for Typha. Drug Stand. Chin. 2008, 2, 135. [Google Scholar]
- Yin, C.C. Comparative Study on the Chemical Composition and Anti-Inflammatory Activity of Schisandra and Its Fermented Products. Master’s Thesis, Changchun University of Chinese Medicine, Changchun, China, 2021. [Google Scholar]
- Wang, Y.P.; Jiang, X.S.; Niu, W.X.; Wang, Y.; Cui, F.; Hu, F.D. Optimization of yeast solid fermentation process for fresh Codonopsis pilosula and its effective constituents, anti-oxidant activity. Chin. Tradit. Pat. Med. 2022, 44, 3428–3433. [Google Scholar]
- Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Xu, B.J. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nurt. Metab. 2015, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Danshiitsoodol, N.; Sugimoto, S.; Noda, M.; Sugiyama, M. Anti-oxidant and anti-inflammatory substance generated newly in Paeoniae Radix Alba extract fermented with plant-derived Lactobacillus brevis 174A. Antioxidants 2021, 10, 1071. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; He, X.; Xu, K.; Xue, Z.; Wang, T.; Xu, Z.; Liu, X. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway. Food Funct. 2022, 13, 3946–3956. [Google Scholar] [CrossRef]
- Tan, J.; Li, Q.; Xue, H.; Tang, J. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. J. Food Sci. 2020, 85, 3731–3745. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef]
Levels | Factors | |||
---|---|---|---|---|
A: Sieve Size (mesh) | B: Liquid-to-Material Ratio (mL·g−1) | C: Fermentation Temperature (°C) | D: Inoculation Amount (%) | |
−1 | 20 | 0.5:1 | 28 | 4 |
0 | 40 | 0.75:1 | 30 | 6 |
1 | 60 | 1:1 | 32 | 8 |
Run | A: Sieve Size (Mesh) | B: Liquid-to-Material Ratio (mL·g−1) | C: Fermentation Temperature (°C) | D: Inoculation Amount (%) | ESE Yield (%) |
---|---|---|---|---|---|
1 | 20 | 0.75:1 | 30 | 4 | 41.22 |
2 | 40 | 0.5:1 | 32 | 6 | 46.73 |
3 | 40 | 0.75:1 | 30 | 6 | 56.7 |
4 | 40 | 0.5:1 | 30 | 4 | 47.26 |
5 | 20 | 0.75:1 | 30 | 8 | 52.92 |
6 | 40 | 0.75:1 | 28 | 8 | 46.76 |
7 | 60 | 0.75:1 | 32 | 6 | 48.22 |
8 | 40 | 0.75:1 | 32 | 8 | 49.36 |
9 | 60 | 0.75:1 | 28 | 6 | 42.37 |
10 | 20 | 0.75:1 | 32 | 6 | 45.62 |
11 | 40 | 0.5:1 | 30 | 8 | 44.25 |
12 | 20 | 0.5:1 | 30 | 6 | 39.38 |
13 | 40 | 0.75:1 | 28 | 4 | 46.05 |
14 | 40 | 0.75:1 | 30 | 6 | 55.11 |
15 | 60 | 0.75:1 | 30 | 4 | 49.68 |
16 | 60 | 0.75:1 | 30 | 8 | 46.04 |
17 | 40 | 0.75:1 | 30 | 6 | 56.5 |
18 | 20 | 0.75:1 | 28 | 6 | 45.53 |
19 | 40 | 1:1 | 28 | 6 | 43.02 |
20 | 60 | 1:1 | 30 | 6 | 46.37 |
21 | 40 | 0.5:1 | 28 | 6 | 44.21 |
22 | 40 | 0.75:1 | 30 | 6 | 54.34 |
23 | 40 | 1:1 | 30 | 8 | 53.83 |
24 | 40 | 1:1 | 32 | 6 | 50.65 |
25 | 40 | 0.75:1 | 32 | 4 | 50.27 |
26 | 60 | 0.5:1 | 30 | 6 | 45.36 |
27 | 40 | 1:1 | 30 | 4 | 48.72 |
28 | 20 | 1:1 | 30 | 6 | 44.24 |
29 | 40 | 0.75:1 | 30 | 6 | 55.15 |
Parameter | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 577.77 | 14 | 41.27 | 14.74 | <0.0001 | ** |
A | 6.95 | 1 | 6.95 | 2.48 | 0.1376 | |
B | 32.14 | 1 | 32.14 | 11.48 | 0.0044 | ** |
C | 43.74 | 1 | 43.74 | 15.62 | 0.0014 | ** |
D | 8.27 | 1 | 8.27 | 2.95 | 0.1078 | |
AB | 3.71 | 1 | 3.71 | 1.32 | 0.2693 | |
AC | 8.29 | 1 | 8.29 | 2.96 | 0.1073 | |
AD | 58.83 | 1 | 58.83 | 21.01 | 0.0004 | ** |
BC | 6.53 | 1 | 6.53 | 2.33 | 0.1491 | |
BD | 16.48 | 1 | 16.48 | 5.89 | 0.0294 | * |
CD | 0.66 | 1 | 0.66 | 0.23 | 0.6358 | |
A2 | 233.29 | 1 | 233.29 | 83.31 | <0.0001 | ** |
B2 | 169.60 | 1 | 169.60 | 60.56 | <0.0001 | ** |
C2 | 132.35 | 1 | 132.35 | 47.26 | <0.0001 | ** |
D2 | 34.94 | 1 | 34.94 | 12.48 | 0.0033 | ** |
Residual | 39.20 | 14 | 2.80 | |||
Lack of fit | 35.16 | 10 | 3.52 | 3.48 | 0.1204 | |
Pure error | 4.04 | 4 | 1.01 | |||
Cor total | 616.97 | 28 |
Active Ingredient | RT | FRT |
---|---|---|
WSE (%) | 69.38 ± 1.02 a | 60.56 ± 0.79 b |
ESE (%) | 65.41 ± 1.38 b | 78.34 ± 1.22 a |
Polysaccharides (mg·g−1) | 60.37 ± 2.18 a | 52.55 ± 1.25 b |
Flavonoids (mg·g−1) | 2.17 ± 0.12 b | 3.41 ± 0.02 a |
Saponins (mg·g−1) | 4.28 ± 0.25 b | 7.69 ± 0.28 a |
Polyphenols (mg·g−1) | 0.33 ± 0.02 b | 0.40 ± 0.02 a |
Organic acids (mg·g−1) | 17.40 ± 0.48 b | 20.47 ± 0.54 a |
Total amino acids (mg·g−1) | 186.48 ± 1.95 b | 193.61 ± 0.76 a |
IC50 | RT | FRT | VC | Acarbose |
---|---|---|---|---|
DPPH (mg·mL−1) | 8.96 ± 0.09 a | 4.83 ± 0.1 b | 0.72 ± 0.06 c | |
ABTS+ (mg·mL−1) | 7.37 ± 0.20 a | 3.27 ± 0.18 b | 0.04 ± 0.01 c | |
·OH (mg·mL−1) | 12.46 ± 0.38 a | 7.33 ± 0.10 b | 0.11 ± 0.03 c | |
α-amylase (mg·mL−1) | 37.70 ± 1.58 a | 23.79 ± 0.55 b | 2.24 ± 0.55 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Duan, D.; Lv, X.; Xiong, B.; Li, Z.; Zhang, S.; Cai, J.; Qiao, X.; Chen, Q. Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity. Fermentation 2024, 10, 153. https://doi.org/10.3390/fermentation10030153
He D, Duan D, Lv X, Xiong B, Li Z, Zhang S, Cai J, Qiao X, Chen Q. Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity. Fermentation. 2024; 10(3):153. https://doi.org/10.3390/fermentation10030153
Chicago/Turabian StyleHe, Dingxuan, Dingyu Duan, Xueyan Lv, Baihui Xiong, Zhuojia Li, Shaojun Zhang, Jing Cai, Xinrong Qiao, and Qiong Chen. 2024. "Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity" Fermentation 10, no. 3: 153. https://doi.org/10.3390/fermentation10030153
APA StyleHe, D., Duan, D., Lv, X., Xiong, B., Li, Z., Zhang, S., Cai, J., Qiao, X., & Chen, Q. (2024). Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity. Fermentation, 10(3), 153. https://doi.org/10.3390/fermentation10030153