Enhanced Methanogenesis of Waste-Activated Sludge (WAS) in a Continuous Stirring Tank Reactor with Stealth Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Configuration and Operation
2.2. WAS Characteristics and Pretreatment
2.3. Analytical Methods
2.4. Biomass Sampling and Analysis
2.5. Calculations
3. Results and Discussion
3.1. Substrate Conversion Performance
3.2. Methanogenic Performance
3.3. Microbial Community Structure
3.4. Electrochemical Efficiency and Energy Budget Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Fernández, V.; Ramil, M.; Rodríguez, I. Basic micro-pollutants in sludge from municipal wastewater treatment plants in the Northwest Spain: Occurrence and risk assessment of sludge disposal. Chemosphere 2023, 335, 139094. [Google Scholar] [CrossRef] [PubMed]
- Deena, S.R.; Vickram, A.S.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; Awasthi, M.K. Enhanced biogas production from food waste and activated sludge using advanced techniques—A review. Bioresour. Technol. 2022, 355, 127234. [Google Scholar] [CrossRef] [PubMed]
- Núñez, D.; Oulego, P.; Collado, S.; Riera, F.A.; Díaz, M. Separation and purification techniques for the recovery of added-value biocompounds from waste activated sludge. A review. Resour. Conserv. Recycl. 2022, 182, 106327. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Ganeshan, P.; Gohil, N.; Kumar, V.; Singh, V.; Rajendran, K.; Harirchi, S.; Solanki, M.K.; Sindhu, R.; Binod, P.; et al. Advanced approaches for resource recovery from wastewater and activated sludge: A review. Bioresour. Technol. 2023, 384, 129250. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, Q.; Zhao, J.; Wu, Y.; Wu, L.; Li, H.; Tang, M.; Sun, Y.; Guo, W.; Feng, Q.; et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review. J. Hazard. Mater. 2020, 383, 121176. [Google Scholar] [CrossRef] [PubMed]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Dhar, B.R. A critical review of microbial electrolysis cells coupled with anaerobic digester for enhanced biomethane recovery from high-strength feedstocks. Crit. Rev. Environ. Sci. Technol. 2020, 52, 50–89. [Google Scholar] [CrossRef]
- Wang, X.-T.; Zhang, Y.-F.; Wang, B.; Wang, S.; Xing, X.; Xu, X.-J.; Liu, W.-Z.; Ren, N.-Q.; Lee, D.-J.; Chen, C. Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process—A review. Bioresour. Technol. 2022, 346, 126641. [Google Scholar] [CrossRef]
- De Vrieze, J.; Arends, J.B.A.; Verbeeck, K.; Gildemyn, S.; Rabaey, K. Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. Water Res. 2018, 146, 244–255. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Yang, C.; Gao, L.; Thangavel, S.; Wang, L.; He, Z.; Cai, W.; Wang, A. Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Res. 2017, 125, 170–179. [Google Scholar] [CrossRef]
- Xu, X.-J.; Wang, W.-Q.; Chen, C.; Xie, P.; Liu, W.-Z.; Zhou, X.; Wang, X.-T.; Yuan, Y.; Wang, A.-J.; Lee, D.-J.; et al. Bioelectrochemical system for the enhancement of methane production by anaerobic digestion of alkaline pretreated sludge. Bioresour. Technol. 2020, 304, 123000. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, R.; Luo, H.; Liu, G.; Kim, Y.; Yu, S.; Zeng, J. Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem. 2015, 50, 1103–1109. [Google Scholar] [CrossRef]
- Im, S.; Ahn, Y.; Chung, J.W. Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge. J. Korean Soc. Environ. Eng. 2015, 37, 682–688. [Google Scholar] [CrossRef]
- Park, J.-G.; Jiang, D.; Lee, B.; Jun, H.-B. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): Insights into electrode materials, reactor configurations, and process designs. Water Res. 2020, 184, 116214. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Szamosi, Z.; Siménfalvi, Z. State of the art on mixing in an anaerobic digester: A review. Renew. Energy 2019, 141, 922–936. [Google Scholar] [CrossRef]
- Kaparaju, P.; Buendia, I.; Ellegaard, L.; Angelidakia, I. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresour. Technol. 2008, 99, 4919–4928. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, J. Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Adv. Eng. Softw. 2012, 44, 54–62. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, X.; Zhang, S.; Ye, W.; Wu, J.; Poncin, S.; Li, H.Z. Investigation of hydrodynamics in high solid anaerobic digestion by particle image velocimetry and computational fluid dynamics: Role of mixing on flow field and dead zone reduction. Bioresour. Technol. 2021, 319, 124130. [Google Scholar] [CrossRef]
- Yang, C.-X.; Wang, L.; Zhong, Y.-J.; Guo, Z.-C.; Liu, J.; Yu, S.-P.; Sangeetha, T.; Liu, B.-L.; Ni, C.; Guo, H. Efficient methane production from waste activated sludge and Fenton-like pretreated rice straw in an integrated bio-electrochemical system. Sci. Total Environ. 2022, 813, 152411. [Google Scholar] [CrossRef]
- Park, J.-G.; Lee, B.; Shi, P.; Kim, Y.; Jun, H.-B. Effects of electrode distance and mixing velocity on current density and methane production in an anaerobic digester equipped with a microbial methanogenesis cell. Int. J. Hydrogen Energy 2017, 42, 27732–27740. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Shin, W.; Jo, S.; Jun, H. Psychrophilic methanogenesis of food waste in a bio-electrochemical anaerobic digester with rotating impeller electrode. J. Clean. Prod. 2018, 188, 556–567. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Shin, W.; Jo, S.; Jun, H. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. Bioresour. Technol. 2018, 259, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, C.; Fan, X.; Yang, C.; Zhou, X.; Guo, Z. Methane Promotion of Waste Sludge Anaerobic Digestion: Effect of Typical Metal Meshes on Community Evolution and Electron Transfer. Water 2022, 14, 3129. [Google Scholar] [CrossRef]
- Guo, Z.; Thangavel, S.; Wang, L.; He, Z.; Cai, W.; Wang, A.; Liu, W. Efficient Methane Production from Beer Wastewater in a Membraneless Microbial Electrolysis Cell with a Stacked Cathode: The Effect of the Cathode/Anode Ratio on Bioenergy Recovery. Energy Fuels 2016, 31, 615–620. [Google Scholar] [CrossRef]
- Pasalari, H.; Esrafili, A.; Rezaee, A.; Gholami, M.; Farzadkia, M. Electrochemical oxidation pretreatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: Performance, Gompertz model, and energy assessment. Chem. Eng. J. 2021, 422, 130046. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Liang, J.; Luo, L.; Wong, J.W.C.; He, D. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application. Bioresour. Technol. 2022, 360, 127613. [Google Scholar] [CrossRef]
- Cai, W.; Liu, W.; Yang, C.; Wang, L.; Liang, B.; Thangavel, S.; Guo, Z.; Wang, A. Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge. ACS Sustain. Chem. Eng. 2016, 4, 4913–4921. [Google Scholar] [CrossRef]
- Rotaru, A.E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2013, 7, 408–415. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, F.; Wang, B.; Zhang, Y.; Lovley, D.R. Methanobacterium Capable of Direct Interspecies Electron Transfer. Environ. Sci. Technol. 2020, 54, 15347–15354. [Google Scholar] [CrossRef]
- Yun, H.; Liang, B.; Ding, Y.; Li, S.; Wang, Z.; Khan, A.; Zhang, P.; Zhang, P.; Zhou, A.; Wang, A.; et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021, 194, 116926. [Google Scholar] [CrossRef] [PubMed]
- Vikromvarasiri, N.; Koyama, M.; Nakasaki, K.; Kurniawan, W.; Pisutpaisal, N. Enhancing methane recovery by intermittent substrate feeding and microbial community response in anaerobic digestion of glycerol. Renew. Energy 2023, 204, 106–113. [Google Scholar] [CrossRef]
- Hussein, S.H.; Qurbani, K.; Ahmed, S.K.; Tawfeeq, W.; Hassan, M. Bioremediation of heavy metals in contaminated environments using Comamonas species: A narrative review. Bioresour. Technol. Rep. 2024, 25, 101711. [Google Scholar] [CrossRef]
- Nittami, T.; Shoji, T.; Koshiba, Y.; Noguchi, M.; Oshiki, M.; Kuroda, M.; Kindaichi, T.; Fukuda, J.; Kurisu, F. Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants. Process Saf. Environ. Prot. 2019, 124, 137–142. [Google Scholar] [CrossRef]
- Fan, Q.; Fan, X.; Fu, P.; Sun, Y.; Li, Y.; Long, S.; Guo, T.; Zheng, L.; Yang, K.; Hua, D. Microbial community evolution, interaction, and functional genes prediction during anaerobic digestion in the presence of refractory organics. J. Environ. Chem. Eng. 2022, 10, 107789. [Google Scholar] [CrossRef]
- Liwarska-Bizukojć, E.; Olejnik, D. Activated sludge community and flocs morphology in response to aluminum oxide particles in the wastewater treatment system. J. Water Process Eng. 2020, 38, 101639. [Google Scholar] [CrossRef]
- Rodrigues, C.V.; Camargo, F.P.; Lourenço, V.A.; Sakamoto, I.K.; Maintinguer, S.I.; Silva, E.L.; Varesche, M.B.A. Optimized conditions for methane production and energy valorization through co-digestion of solid and liquid wastes from coffee and beer industries using granular sludge and cattle manure. J. Environ. Chem. Eng. 2023, 11, 111250. [Google Scholar] [CrossRef]
- Franchi, O.; Álvarez, M.I.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; del Río, Á.V.; Mosquera-Corral, A.; Campos, J.L. Operational variables and microbial community dynamics affect granulation stability in continuous flow aerobic granular sludge reactors. J. Water Process Eng. 2024, 59, 104951. [Google Scholar] [CrossRef]
- Qi, X.; Jia, X.; Wang, Y.; Xu, P.; Li, M.; Xi, B.; Zhao, Y.; Zhu, Y.; Meng, F.; Ye, M. Development of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis. Bioresour. Technol. 2022, 358, 127385. [Google Scholar] [CrossRef]
- Ma, X.; Li, S.; Pan, R.; Wang, Z.; Li, J.; Zhang, X.; Azeem, M.; Yao, Y.; Xu, Z.; Pan, J.; et al. Effect of biochar on the mitigation of organic volatile fatty acid emission during aerobic biostabilization of biosolids and the underlying mechanism. J. Clean. Prod. 2023, 390, 136213. [Google Scholar] [CrossRef]
Group | Actual Cumulative Production (mL/gVSS) | Kinetic Parameters | |||
---|---|---|---|---|---|
Pm (mL/gVSS) | Rm (mL/(gVSS·d)) | λ (d) | R2 | ||
AD-MEC | 281.6 ± 12.9 | 327.9 ± 6.6 | 11.7 ± 0.01 | 4.5 ± 0.3 | 0.996 |
AD-CM | 199.6 ± 14.0 | 359.3 ± 28.9 | 7.1 ± 0.04 | 6.9 ± 0.4 | 0.994 |
AD | 113.1 ± 15.7 | 280.9 ± 46.9 | 3.9 ± 0.07 | 8.0 ± 1.4 | 0.991 |
Samples | ACE | Chao | Shannon | Simpson | |
---|---|---|---|---|---|
Initial WAS | 1569.2 | 1563.8 | 5.35 | 0.016 | |
Sludge | AD-MEC | 2126.4 ± 3.1 | 2091.8 ± 7.3 | 5.54 ± 0.08 | 0.011 ± 0.001 |
AD-CM | 1941.0 ± 123.8 | 1922.2 ± 111.5 | 5.53 ± 0.04 | 0.010 ± 0.001 | |
AD | 1762.7 ± 232.1 | 1786.5 ± 213.7 | 5.27 ± 0.49 | 0.021 ± 0.014 | |
Biofilm | AD-MEC | 1425.8 ± 27.1 | 1402.6 ± 26.8 | 4.18 ± 0.29 | 0.066 ± 0.035 |
AD-CM | 1600.2 ± 44.5 | 1579.9 ± 37.5 | 4.50 ± 0.21 | 0.040 ± 0.012 | |
AD | 1681.5 ± 27.4 | 1662.3 ± 51.4 | 4.66 ± 0.11 | 0.032 ± 0.008 |
Voltage | External Voltage | ||
---|---|---|---|
0.6 V | 0.8 V | 1.0 V | |
Accumulative methane production (mL/gVSS) | 240.9 | 281.6 | 105.6 |
VSS removal (%) | 52.5 | 66.3 | 43.3 |
Average current (mA) | 0.88 | 1.15 | 0.85 |
Average anode potential (V) | −0.53 | −0.31 | −0.16 |
Average cathode potential (V) | −1.12 | −1.11 | −1.16 |
Coulombic efficiency (%) | 3.0 | 3.1 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Zhang, D.; Zhang, L.; Ai, Z.; Guo, Z.; Yang, T.; Zhai, L.; Huang, C. Enhanced Methanogenesis of Waste-Activated Sludge (WAS) in a Continuous Stirring Tank Reactor with Stealth Electrodes. Fermentation 2024, 10, 158. https://doi.org/10.3390/fermentation10030158
He W, Zhang D, Zhang L, Ai Z, Guo Z, Yang T, Zhai L, Huang C. Enhanced Methanogenesis of Waste-Activated Sludge (WAS) in a Continuous Stirring Tank Reactor with Stealth Electrodes. Fermentation. 2024; 10(3):158. https://doi.org/10.3390/fermentation10030158
Chicago/Turabian StyleHe, Wen, Dahai Zhang, Lu Zhang, Zhuanyi Ai, Zechong Guo, Tongyi Yang, Linzhi Zhai, and Cheng Huang. 2024. "Enhanced Methanogenesis of Waste-Activated Sludge (WAS) in a Continuous Stirring Tank Reactor with Stealth Electrodes" Fermentation 10, no. 3: 158. https://doi.org/10.3390/fermentation10030158
APA StyleHe, W., Zhang, D., Zhang, L., Ai, Z., Guo, Z., Yang, T., Zhai, L., & Huang, C. (2024). Enhanced Methanogenesis of Waste-Activated Sludge (WAS) in a Continuous Stirring Tank Reactor with Stealth Electrodes. Fermentation, 10(3), 158. https://doi.org/10.3390/fermentation10030158