Anti-Anemic and Anti-Dyspepsia Potential of Yogurt with Carao (Cassia grandis) in Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extract Preparation
2.2. Yogurt Preparation
2.3. Animals and Experimental Design
2.4. Biochemical Analyses of Anemic Rats
2.5. Analyses of Rats with Functional Dyspepsia
2.5.1. Gastric Emptying Rate and Small Intestine Propulsion Rate
2.5.2. Small Intestine Muscle Tension and Contraction Frequency
2.6. Statistical Analysis
3. Results and Discussion
3.1. Impact of Carao Fortified Yogurt Diet on Body and Relative Organ Weights
3.2. Monitoring Fortification Effects on Complete Blood Count
3.3. Fortification Effects on Serum Profile of Rat Groups
3.4. Fortification Effects on Gastric Emptying Rate, Intestinal Propulsion Rate, Intestinal Muscle Tension, and Small Intestinal Contraction Frequency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcía-Fuentes, J.; Santos-Aleman, R.; Borrás-Linares, I.; Sánchez, J.L. The Carao (Cassia grandis L.): Its Potential Usage in Pharmacological, Nutritional, and Medicinal Applications. In Innovations in Biotechnology for a Sustainable Future; Maddela, N.R., García, L.C., Eds.; Springer: Cham, Switzerland, 2021; pp. 403–427. [Google Scholar]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- Marcía-Fuentes, J.; Fernández, I.; Fernández, H.; Sánchez, J.; Alemán, R.; Alarcon, M. Quantification of bioactive molecules, minerals and bromatological analysis in carao (Cassia grandis). J. Agric. Sci. 2020, 12, 88. [Google Scholar]
- Wang, H.; Livingston, K.A.; Fox, C.S.; Meigs, J.B.; Jacques, P.F. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women. Nutr. Res. 2013, 33, 18–26. [Google Scholar] [CrossRef]
- Svenning, C.; Brynhildsvold, J.; Molland, T.; Langsrud, T.; Elisabeth Vegarud, G. Antigenic response of whey proteins and genetic variants of β-lactoglobulin—The effect of proteolysis and processing. Int. Dairy J. 2000, 10, 699–711. [Google Scholar] [CrossRef]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.P.; de Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Patro-Gołąb, B.; Shamir, R.; Szajewska, H. Yogurt for treating acute gastroenteritis in children: Systematic review and meta-analysis. Clin. Nutr. 2015, 34, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Guarner, F. Impacts of prebiotics on the immune system and inflammation. In Diet, Immunity and Inflammation; Woodhead Publishing: Sawston, UK, 2013; pp. 292–312. [Google Scholar]
- Shadnoush, M.; Hosseini, R.S.; Mehrabi, Y.; Delpisheh, A.; Alipoor, E.; Faghfoori, Z.; Mohammadpour, N.; Moghadam, J.Z. Probiotic yogurt Affects Pro- and Anti-inflammatory Factors in Patients with Inflammatory Bowel Disease. Iran. J. Pharm. Res. IJPR 2013, 12, 929. [Google Scholar] [PubMed]
- Kies, A.K. Authorised EU health claims related to the management of lactose intolerance: Reduced lactose content, dietary lactase supplements and live yoghurt cultures. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims; Sadler, M.J., Ed.; Woodhead Publishing: Cambridge, UK, 2014; Chapter 9; pp. 177–211. [Google Scholar]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Sayón-Orea, C.; Bes-Rastrollo, M.; Martí, A.; Pimenta, A.M.; Martín-Calvo, N.; Martínez-González, M.A. Association between yogurt consumption and the risk of metabolic syndrome over 6 years in the sun study. BMC Public Health 2015, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- Dumas, A.-A.; Lapointe, A.; Dugrenier, M.; Provencher, V.; Lamarche, B.; Desroches, S. A systematic review of the effect of yogurt consumption on chronic diseases risk markers in adults. Eur. J. Nutr. 2017, 56, 1375–1392. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yogurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv. Nutr. 2017, 8, 812–829. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, G.; Burton, K.J.; Von Ah, U.; Bütikofer, U.; Pralong, F.P.; Vionnet, N.; Portmann, R.; Vergères, G. Metabolic footprinting of fermented milk consumption in serum of healthy men. J. Nutr. 2018, 22, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dairy foods, obesity, and metabolic health: The role of the food matrix compared with single nutrients. Adv. Nutr. 2019, 10, 917S–923S. [Google Scholar] [CrossRef]
- Paz, D.; Aleman, R.S.; Cedillos, R.; Olson, D.W.; Aryana, K.; Marcia, J.; Boeneke, C. Probiotic Characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus as Influenced by Carao (Cassia grandis). Fermentation 2022, 8, 499. [Google Scholar] [CrossRef]
- Marcia, J.; Aleman, R.S.; Montero-Fernández, I.; Martín-Vertedor, D.; Manrique-Fernández, V.; Moncada, M.; Kayanush, A. Attributes of Lactobacillus acidophilus as Effected by Carao (Cassia grandis) Pulp Powder. Fermentation 2023, 9, 408. [Google Scholar] [CrossRef]
- Aleman, R.S.; Moncada, M.; Aryana, K.J. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023, 28, 619. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.S.; Marcia, J.; Page, R.; Kazemzadeh Pournaki, S.; Martín-Vertedor, D.; Manrique-Fernández, V.; Montero-Fernández, I.; Aryana, K. Effects of Yogurt with Carao (Cassia grandis) on Intestinal Barrier Dysfunction, α-glycosidase Activity, Lipase Activity, Hypoglycemic Effect, and Antioxidant Activity. Fermentation 2023, 9, 566. [Google Scholar] [CrossRef]
- Marcia, J.A.; Aleman, R.S.; Kazemzadeh, S.; Manrique Fernández, V.; Martín Vertedor, D.; Kayanush, A.; Montero Fernández, I. Isolated Fraction of Gastric-Digested Camel Milk Yogurt with Carao (Cassia grandis) Pulp Fortification Enhances the Anti-Inflammatory Properties of HT-29 Human Intestinal Epithelial Cells. Pharmaceuticals 2023, 16, 1032. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.S.; Page, R.; Cedillos, R.; Montero-Fernández, I.; Fuentes, J.A.M.; Olson, D.W.; Aryana, K. Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells. Pharmaceuticals 2023, 16, 1511. [Google Scholar] [CrossRef]
- Aleman, R.S.; Cedillos, R.; Page, R.; Olson, D.; Aryana, K. Physico-chemical, microbiological, and sensory characteristics of yogurt as affected by ingredients that help treat leaky gut. J. Dairy Sci. 2023, 106, 6. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A.M.; Soliman, T.N.; Elhendy, H.A.; El-Kholy, W.M. Nano-encapsulated iron and folic acid-fortified functional yogurt enhance anemia in albino rats. Front. Nutr. 2021, 8, 654624. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, F.; Zhang, W.; Shen, S.; Wang, L.; Zhang, H.; Ding, M.; Chen, H.; Huang, M. Effect of Yogurt on Gastrointestinal Motility of Dyspepsia Mice. IOP Conf. Ser. Mater. Sci. Eng. 2019, 484, 012002. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R.; Saunders, W.B. Tietz Textbook of Clinical Chemistry, 3rd ed.; WB Saunders: Philadelphia, PA, USA, 1999; p. 283. [Google Scholar]
- Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed.; W. B. Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 2007, 45, 2179–2205. [Google Scholar] [CrossRef] [PubMed]
- Prada, A.L.; Achod, L.D.; Keita, H.; Carvalho, J.C.; de Souza, T.P.; Amado, J. Development, pharmacological and toxicological evaluation of a new tablet formulation based on Cassia grandis fruit extract. Sustain. Chem. Pharm. 2020, 16, 100244. [Google Scholar] [CrossRef]
- Nfambi, J.; Bbosa, G.S.; Sembajwe, L.F.; Gakunga, J.; Kasolo, J.N. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in wistar albino rats. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Prada, A.L.; Keita, H.; de Souza, T.P.; Lima, E.S.; Acho, L.D.R.; da Silva, J.A.; Carvalho, J.C.T.; Amado, J.R.R. Cassia grandis Lf Nanodispersion is a hypoglycemic product with a potent α-glucosidase and Pancreatic Lipase Inhibitor Effect. Saudi Pharm. J. 2019, 27, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Bona, E.; Massa, N.; Novello, G.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E. Essential Oil Antibacterial Activity against Methicillin-Resistant and -Susceptible Staphylococcus aureus Strains. Microbiol. Res. 2019, 10, 8331. [Google Scholar] [CrossRef]
- Prada, A.L.; Amado, J.R.R.; Keita, H.; Zapata, E.P.; Carvalho, H.; Lima, E.S.; de Sousa, T.P.; Carvalho, J.C.T. Cassia grandis fruit extract reduces the blood glucose level in alloxan-induced diabetic rats. Biomed. Pharmacother. 2018, 103, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.; Mahan, L.K.; Escott-Stump, S. Weight management. Kirjassa Mahan LK Escott 2003, 7, 9–10. [Google Scholar]
- Ross, C.M. Quercetin, fruit consumption, and bone mineral density. Am. J. Clin. Nutr. 2005, 81, 1176. [Google Scholar] [CrossRef]
- Lonnerdal, B. Calcium and iron absorption–mechanisms and public health relevance. Int. J. Vitam. Nutr. Res. 2010, 80, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, M.P.; Kao, J.P.Y.; Matteson, D.R. Cellular Physiology and Neurophysiology, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Abramson, J.J.; Buck, E.; Salama, G.; Casida, J.E.; Pessah, I.N. Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 1988, 263, 18750–18758. [Google Scholar] [CrossRef]
- Hernández, E. Contribución al Estudio Fotoquimico de los Frutos de Carao (Cassia grandis L., Leguminosae). Bachelor’s Thesis, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica, 1978. [Google Scholar]
- Ando, H. Behavior of cinnamic acid and its derivates in the animal body. J. Biol. Chem. 1919, 38, 7–11. [Google Scholar] [CrossRef]
- Cremin, J.D., Jr.; McLeod, K.R.; Harmon, D.L.; Goetsch, A.L.; Bourquin, L.D.; Fahey, G.C., Jr. Portal and hepatic fluxes in sheep and con-centrations in cattle ruminal fluid of 3-(4-hydroxyphenyl)propionic, benzoic, 3-phenylpropionic, and trans-cinnamic acids. J. Anim. Sci. 1995, 73, 1766–1775. [Google Scholar] [CrossRef]
- Niu, X.; Zhang, Z.X. Physiology, 9th ed.; China Press of Traditional Chinese Medicine: Beijing, China, 2015. [Google Scholar]
- Hu, X.J.; Huang, S.P.; Deng, S.G. Effect of Decoction of Invigorating Spleen and Regulating Qi on Gastrointestinal Motility, Motilin and Gastrin in Rats with Functional Dyspepsia. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 217. [Google Scholar]
- Hu, J. Studies on Therapeutic Substances of Semen Crotonis Pulveratum on Bowel Movement and Anti-Endotoxin Activities of Wei-Chang-An-Wan. Master’s Thesis, Tianjin University, Tianjin, China, 2009. [Google Scholar]
- Akomolafe, R.O.; Adeoshun, I.O.; Ayoka, A.O.; Elujoba, A.A.; Iwalewa, E.O. An in vitro study of the effects of Cassia podocarpa fruit on the intestinal motility of rats. Phytomedicine 2004, 11, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.H.; Kuo, S.C.; Cheng, J.T. Structure-activity relationships of anthraquinones in the decrease of intestinal motility. J. Pharm. Pharmacol. 2000, 52, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, J.; Blaustein, M.P.; Navar, L.G. Attenuated renal vascular responses to acute angiotensin II infusion in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am. J. Physiol.-Ren. Physiol. 2011, 301, F574–F579. [Google Scholar] [CrossRef] [PubMed]
- Antos, L.K.; Song, H.; Romar, L.; Griffith, B.P.; Pressley, T.A.; Blaustein, M.P. Ouabain Augments Agonist-Induced Ca2+ Signaling and Upregulates Ca2+ Transporter Expression in Human Arterial Smooth Muscle Cells. Hypertension 2010, 56, E144. [Google Scholar]
- Quast, U. Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol. Sci. 1993, 14, 332–337. [Google Scholar] [CrossRef] [PubMed]
Parameters | Negative Control | Positive Control | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
Total weight gain | 14.97 ± 4.49 a | 18.8 ± 4.25 a | 15.28 ± 3.31 a | 20.31 ± 5.97 a | 15.55 ± 3.45 a | 15.65 ± 3.39 a |
Liver (Weight gain) | 3.35 ± 1.05 a | 3.65 ± 0.95 a | 4.05 ± 0.88 a | 3.36 ± 0.98 a | 3.58 ± 0.81 a | 3.25 ± 0.83 a |
Kidney (Weight gain) | 0.59 ± 0.17 a | 0.68 ± 0.17 a | 0.79 ± 0.17 a | 0.76 ± 0.18 a | 0.72 ± 0.16 a | 0.70 ± 0.18 a |
Spleen (Weight gain) | 0.49 ± 0.14 a | 0.66 ± 0.16 a | 0.83 ± 0.18 a | 0.69 ± 0.18 a | 0.78 ± 0.18 a | 0.62 ± 0.16 a |
Heart (Weight gain) | 0.43 ± 0.13 a | 0.43 ± 0.15 a | 0.38 ± 0.08 a | 0.36 ± 0.09 a | 0.39 ± 0.11 a | 0.34 ± 0.09 a |
Lungs (Weight gain) | 0.73 ± 0.29 a | 0.79 ± 0.15 a | 0.81 ± 0.17 a | 0.74 ± 0.26 a | 0.78 ± 0.14 a | 0.79 ± 0.22 a |
Parameters | Negative Control | Positive Control | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|
Glucose mg dL−1 | 193.08 ± 57.94 a | 160.55 ± 40.15 a | 178.25 ± 39.23 a | 175.75 ± 47.45 a | 182.85 ± 42.05 a | 161.25 ± 41.85 a |
T.Ch. mg dL−1 | 75.97 ± 25.79 c | 79.34 ± 22.32 c | 101.01 ± 15.62 b | 103.84 ± 22.63 b | 95.26 ± 19.61 b | 123.31 ± 26.86 a |
TG mg dL−1 | 173.13 ± 51.94 b | 100.22 ± 25.05 a | 92.67 ± 15.98 a | 101.65 ± 27.44 a | 94.52 ± 21.74 a | 102.36 ± 31.85 a |
HDL mg dL−1 | 30.49 ± 9.12 c | 42.75 ± 10.64 b | 43.72 ± 7.41 b | 40.13 ± 10.83 b | 38.21 ± 8.74 b | 48.45 ± 12.59 a |
LDL mg dL−1 | 21.65 ± 6.48 b | 27.78 ± 6.94 a | 26.36 ± 5.79 a | 26.83 ± 7.24 a | 27.78 ± 6.39 a | 32.06 ± 8.33 a |
AST mg IU−1 | 185.72 ± 55.76 a | 203.73 ± 50.94 a | 167.91 ± 36.94 a | 180.26 ± 48.67 a | 161.97 ± 37.25 a | 164.58 ± 42.79 a |
ALT mg IU−1 | 26.36 ± 7.90 a | 39.66 ± 9.91 a | 29.21 ± 6.42 a | 29.96 ± 10.76 a | 27.07 ± 6.22 a | 28.02 ± 7.27 a |
ALP mg IU−1 | 274.37 ± 82.29 a | 273.12 ± 68.27 a | 229.42 ± 50.47 a | 249.13 ± 67.26 a | 278.82 ± 64.12 a | 251.06 ± 65.26 a |
T. Bilirubin g dL−1 | 0.28 ± 0.05 a | 0.22 ± 0.05 a | 0.19 ± 0.04 a | 0.21 ± 0.05 a | 0.27 ± 0.06 a | 0.22 ± 0.05 a |
Urea mg dL−1 | 26.36 ± 7.90 a | 35.15 ± 8.78 a | 32.3 ± 7.1 a | 25.17 ± 6.79 a | 25.65 ± 5.88 a | 26.36 ± 6.85 a |
Creatinine µmol | 0.93 ± 0.28 a | 0.92 ± 0.23 a | 0.91 ± 0.26 a | 0.93 ± 0.25 a | 0.92 ± 0.21 a | 0.93 ± 0.24 a |
Parameters | Normal Group | Model Group | Drug Group | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|---|---|
Gastric emptying rate | 46.12 ± 1.8 d | 34.60 ± 1.4 e | 62.20 ± 8.3 a | 54.60 ± 3.1 c | 55.76 ± 3.1 c | 56.65 ± 4.13 bc | 58.43 ± 1.45 b |
Intestinal propulsion rate | 48.45 ± 3.1 a | 33.00 ± 8.3 e | 41.00 ± 1.4 b | 35.23 ± 3.2 d | 35.76 ± 1.3 d | 36.33 ± 2.45 d | 38.80 ± 1.6 c |
Intestinal muscle tension | 0.14 ± 0.02 a | 0.08 ± 0.01 d | 0.16 ± 0.04 a | 0.11 ± 0.01 c | 0.12 ± 0.01 c | 0.12 ± 0.01 bc | 0.13 ± 0.01 b |
Small intestinal contraction frequency | 6.25 ± 0.60 d | 6.00 ± 0.71 e | 7.56 ± 1.58 a | 7.46 ± 1.59 c | 7.48 ± 1.45 cb | 7.48 ± 1.27 cb | 7.50 ± 1.33 b |
Motilin level | 2023.77 ± 365.64 c | 1101.77 ± 275.75 b | 1221.19 ± 392.92 a | 1105.56 ± 223.57 b | 1045.56 ± 222.90 b | 1007.56 ± 257.88 b | 1001.56 ± 228.74 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcia, J.; de Jesús Álvarez Gil, M.; Fernández, H.Z.; Montero-Fernández, I.; Martín-Vertedor, D.; Yadav, A.; Aleman, R.S. Anti-Anemic and Anti-Dyspepsia Potential of Yogurt with Carao (Cassia grandis) in Rat Model. Fermentation 2024, 10, 199. https://doi.org/10.3390/fermentation10040199
Marcia J, de Jesús Álvarez Gil M, Fernández HZ, Montero-Fernández I, Martín-Vertedor D, Yadav A, Aleman RS. Anti-Anemic and Anti-Dyspepsia Potential of Yogurt with Carao (Cassia grandis) in Rat Model. Fermentation. 2024; 10(4):199. https://doi.org/10.3390/fermentation10040199
Chicago/Turabian StyleMarcia, Jhunior, Manuel de Jesús Álvarez Gil, Héctor Zumbado Fernández, Ismael Montero-Fernández, Daniel Martín-Vertedor, Ajitesh Yadav, and Ricardo S. Aleman. 2024. "Anti-Anemic and Anti-Dyspepsia Potential of Yogurt with Carao (Cassia grandis) in Rat Model" Fermentation 10, no. 4: 199. https://doi.org/10.3390/fermentation10040199
APA StyleMarcia, J., de Jesús Álvarez Gil, M., Fernández, H. Z., Montero-Fernández, I., Martín-Vertedor, D., Yadav, A., & Aleman, R. S. (2024). Anti-Anemic and Anti-Dyspepsia Potential of Yogurt with Carao (Cassia grandis) in Rat Model. Fermentation, 10(4), 199. https://doi.org/10.3390/fermentation10040199