Impact of a Biopreservative Derived from Lactic Fermentation on Quality after Food Processing: A Case Study on Sliced Cooked Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biopreservative Assays
2.1.1. Biopreservative Manufacturing
2.1.2. The Minimum Concentration Assays
2.2. Sliced Cooked Production
Sliced Cooked Ham Manufacturing
2.3. Sliced Cooked Characterization
2.3.1. Physicochemical Analyses
General Physicochemical Analyses
Water Activity Measurement
pH Values
2.3.2. Texture Profile Analyses
2.4. Slice Cooked Ham Preservation
2.4.1. Microbial Load
2.4.2. Minimal Inhibitory Concentration
2.5. Quality Evaluation
Color Assays
- B1—Blank cold storage at 7 °C;
- B2—Blank storage at 25 °C;
- C1—Control cold storage at 7 °C;
- C2—Control storage at 25 °C;
- T1—Treatment cold storage at 7 °C;
- T2—Control storage at 25 °C;
2.6. Statistical Analysis
3. Results and Discussion
3.1. Screening Biopreservative Concentration
3.2. Physicochemical Characterization of the Ham
3.3. Impact of Storage Temperature on Microbial Growth in Sliced Cooked Ham
3.4. Shelf-Life Evaluation
3.5. Quality Impact Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leroy, F.; Degreef, F. Convenient Meat and Meat Products. Societal and Technological Issues. Appetite 2015, 94, 40–46. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- De Souza, E.L.; De Oliveira, K.Á.; De Oliveira, M.E. Influence of lactic acid bacteria metabolites on physical and chemical food properties. Curr. Opin. Food Sci. 2023, 49, 100981. [Google Scholar] [CrossRef]
- Bosse (Née Danz), R.; Müller, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2018, 58, 610–630. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, C.; De Vuyst, L.; Leroy, F. Shelf-life Reduction as an Emerging Problem in Cooked Hams Underlines the Need for Improved Preservation Strategies. Crit. Rev. Food Sci. Nutr. 2015, 55, 1425–1443. [Google Scholar] [CrossRef] [PubMed]
- Heras, M.; Huang, C.-C.; Chang, C.-W.; Lu, K.-H. Trends in chitosan-based films and coatings: A systematic review of the incorporated biopreservatives, biological properties, and nanotechnology applications in meat preservation. Food Packag. Shelf Life 2024, 42, 101259. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Nisa, M.; Dar, R.A.; Fomda, B.A.; Nazir, R. Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023, 149, 109710. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- ISO 20776-2; Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices against Reference Broth Micro-Dilution. ISO: Geneva, Switzerland, 2021.
- CLSI. Clinical and Laboratory Standards Institute consensus process. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 2nd ed.; Approved Standard—Ninth. M07-A9; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2012; Volume 32. [Google Scholar]
- AOAC (Ed.) Official Method of Analysis; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- ISO 18787:2017; Foodstuffs—Determination of Water Activity 15. ISO: Geneva, Switzerland, 2017.
- ISO 2917:1999(E); Meat and Meat Products—Measurement of pH—Reference Method 9. ITEH Standards: Toronto, ON, Canada, 1999.
- ISO 11036:2020. (n.d.); Sensory Analysis—Methodology—Texture Profile. ISO: Geneva, Switzerland, 2020.
- Guerra, C.A.; Costa, L.M.; De Oliveira, V.S.; De Paula, B.P.; Junior, W.J.F.L.; Luchese, R.H.; Corich, V.; Giacomini, A.; Guerra, A.F. Correlation between natural microbial load and formation of ropy slime affecting the superficial color of vacuum-packaged cooked sausage. Meat Sci. 2023, 201, 109197. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1:2013. (n.d.); Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Collins, D.; Hopkins, D.L. The effect of electrical stimulation and tenderstretching on colour and oxidation traits of alpaca (Vicunga pacos) meat. Meat Sci. 2019, 156, 125–130. [Google Scholar] [CrossRef] [PubMed]
- De Lima, A.L.; Guerra, C.A.; Costa, L.M.; De Oliveira, V.S.; Lemos Junior, W.J.F.; Luchese, R.H.; Guerra, A.F. A Natural Technology for Vacuum-Packaged Cooked Sausage Preservation with Potentially Postbiotic-Containing Preservative. Fermentation 2022, 8, 106. [Google Scholar] [CrossRef]
- Iseppi, R.; Camellini, S.; Sabia, C.; Messi, P. Combined Antimicrobial Use of Essential Oils and Bacteriocin bacLP17 as Seafood Biopreservative to Control Listeria Monocytogenes Both in Planktonic and in Sessile Forms. Res. Microbiol 2020, 171, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.; Best, T. Low-carbohydrate, high-fat dieters: Characteristic food choice motivations, health perceptions and behaviours. Food Qual. Prefer. 2017, 62, 162–171. [Google Scholar] [CrossRef]
- Guerrero, L.; Gou, P.; Arnau, J. The influence of meat pH on mechanical and sensory textural properties of dry-cured ham. Meat Sci. 1999, 52, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, P.; Sharma, P.; Kelly, A.L.; Risbo, J.; Rattray, F.P.; Sheehan, J.J. Solubility of carbon dioxide in renneted casein matrices: Effect of pH, salt, temperature, partial pressure, and moisture to protein ratio. Food Chem. 2021, 336, 127625. [Google Scholar] [CrossRef] [PubMed]
- Lemos Junior, W.J.F.; Fioravante Guerra, A.; Da Silva Duarte, V.; Treu, L.; Tarrah, A.; Campanaro, S.; Luchese, R.H.; Giacomini, A.; Corich, V. Draft genome sequence data of Lactobacillus paracasei strain DTA83 isolated from infant stools. Data Brief 2019, 22, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Lemos Junior, W.J.F.; Guerra, A.F.; Tarrah, A.; Da Silva Duarte, V.; Giacomini, A.; Luchese, R.H.; Corich, V. Safety and Stability of Two Potentially Probiotic Lactobacillus Strains After In Vitro Gastrointestinal Transit. Probiotics Antimicrob. Proteins 2020, 12, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Bello, A.; Barreto-Palacios, V.; García-Segovia, P.; Mir-Bel, J.; Martínez-Monzó, J. Effect of pH on Color and Texture of Food Products. Food Eng. Rev. 2013, 5, 158–170. [Google Scholar] [CrossRef]
- Santiesteban-López, N.A.; Gómez-Salazar, J.A.; Santos, E.M.; Campagnol, P.C.B.; Teixeira, A.; Lorenzo, J.M.; Sosa-Morales, M.E.; Domínguez, R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022, 11, 2613. [Google Scholar] [CrossRef]
Parameter | Test | Quantity |
---|---|---|
Physico-chemical | Moisture (%) | 77.46 ± 0.021 |
Protein (%) | 16.87 ± 0.247 | |
Fat (%) | 3.61 ± 0.091 | |
Ash (%) | 1.22 ± 0.080 | |
Carbohydrate (%) | 0.84 | |
Potential of hydrogen (pH) | 6.49 ± 0.021 | |
Water activity (aw) | 0.976 ± 0.002 | |
Texture profile | Fracturability (N/cm2) | 19.453 ± 0.983 |
Hardness-1 | 21.366 ± 1.001 | |
Hardness-2 | 19.753 ± 0.894 | |
Cohesiveness | 1.205 ± 0.222 | |
Springiness (mm) | 13.600 ± 0.432 | |
Chewiness (J/cm2) | 35.015 ± 0.567 |
Temperature Profile | Blank (Log cfu/g/Day) | Control (Log cfu/g/Day) | Treatment (Log cfu/g/Day) | |
---|---|---|---|---|
Cold storage at 7 °C | N (Tgrowth) | 0.2562 | 0.3124 | 0.0677 |
N (Tdeceleration) | 0.1693 | 0.2235 | 0.0447 | |
Cold storage with soft abuse | N (Tgrowth) | 0.302 | 0.3454 | 0.0839 |
N (Tdeceleration) | 0.1903 | 0.2145 | 0.0555 | |
Cold storage with large abuse | N (Tgrowth) | 1.018 | 1.111 | 0.4947 |
N (Tdeceleration) | 0.3726 | 0.4532 | 0.181 |
Groups | L* | a* | b* | C* | hab | ΔE |
---|---|---|---|---|---|---|
B1 | 65.198 ± 4.358 bcd | 6.626 ± 0.067 a | 10.890 ± 0.050 ab | 12.748 ± 0.007 bc | 58.680 ± 0.375 ab | 7.092 ± 0.100 b |
C1 | 68.652 ± 0.401 a | 6.637 ± 0.058 a | 11.647 ± 0.132 a | 13.405 ± 0.143 a | 60.322 ± 0.065 a | 8.402 ± 0.575 a |
T1 | 68.650 ± 0.240 a | 8.115 ± 0.106 c | 9.585 ± 0.474 c | 12.562 ± 0.293 bc | 49.727 ± 1.766 c | 6.549 ± 1.509 b |
B2 | 68.579 ± 0.550 a | 6.887 ± 0.219 b | 11.020 ± 0.669 d | 12.995 ± 0.684 bc | 57.978 ± 0.747 ab | 8.417 ± 0.934 a |
C2 | 68.261 ± 0.245 ab | 7.057 ± 0.460 b | 10.660 ± 0.160 b | 12.786 ± 0.388 bc | 56.514 ± 1.323 b | 6.589 ± 0.317 b |
T2 | 68.261 ± 0.245 ab | 8.480 ± 0.028 c | 9.130 ± 0.948 c | 12.468 ± 0.713 cd | 47.032 ± 2.873 c | 6.877 ± 0.061 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fioravante Guerra, A.; Gava Barreto, A.; Rodrigues Viviani, I.; Marques Costa, L.; Alberto Guerra, C.; Corich, V.; Giacomini, A.; Lemos Junior, W.J.F. Impact of a Biopreservative Derived from Lactic Fermentation on Quality after Food Processing: A Case Study on Sliced Cooked Ham. Fermentation 2024, 10, 336. https://doi.org/10.3390/fermentation10070336
Fioravante Guerra A, Gava Barreto A, Rodrigues Viviani I, Marques Costa L, Alberto Guerra C, Corich V, Giacomini A, Lemos Junior WJF. Impact of a Biopreservative Derived from Lactic Fermentation on Quality after Food Processing: A Case Study on Sliced Cooked Ham. Fermentation. 2024; 10(7):336. https://doi.org/10.3390/fermentation10070336
Chicago/Turabian StyleFioravante Guerra, André, Angela Gava Barreto, Isabella Rodrigues Viviani, Lucas Marques Costa, Carlos Alberto Guerra, Viviana Corich, Alessio Giacomini, and Wilson José Fernandes Lemos Junior. 2024. "Impact of a Biopreservative Derived from Lactic Fermentation on Quality after Food Processing: A Case Study on Sliced Cooked Ham" Fermentation 10, no. 7: 336. https://doi.org/10.3390/fermentation10070336
APA StyleFioravante Guerra, A., Gava Barreto, A., Rodrigues Viviani, I., Marques Costa, L., Alberto Guerra, C., Corich, V., Giacomini, A., & Lemos Junior, W. J. F. (2024). Impact of a Biopreservative Derived from Lactic Fermentation on Quality after Food Processing: A Case Study on Sliced Cooked Ham. Fermentation, 10(7), 336. https://doi.org/10.3390/fermentation10070336