Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Preparation of Rosa and Rosa Fermentation
2.3. Measurement of Antioxidant Activity In Vitro
2.4. Contents of Total Flavonoids, Total Pphenols, and Total Anthocyanins
2.5. Quantitative Analysis of the Phenolic Compounds from FR and R by UHPLC with Triple-Quadrupole Tandem Mass
2.5.1. Preparation of Sample and Standard Solutions
2.5.2. UHPLC-QqQ-MS/MS Method
2.5.3. Accuracy and Precision
2.6. Computational Method
2.7. Cell Culture
2.8. Cell Viability
2.9. Induction of Oxidative Stress
2.10. Determination of MDA and Antioxidant Enzyme Activity
2.11. Quantitative and Real-Time PCR
2.12. Statistical Analysis
3. Results and Discussion
3.1. Contents of Total Flavonoids, Total Phenols, and Total Anthocyanins
3.2. Effects of R and FR on Scavenging Free Radicals
3.3. UHPLC-QqQ-MS/MS Method Development and Optimization
3.4. Validation of UHPLC with Triple-Quadrupole Tandem Mass Method
3.5. Quantifying Phenolic Compounds in Rosa: Utilizing UHPLC QqQ-MS/MS and Exploring Microbial Metabolic Transformations
3.6. Evaluating the Antioxidant Potential of Compounds Exhibiting Substantial Content Changes during Fermentation Using the DFT Method
3.6.1. Molecular Orbital Analysis
3.6.2. Global Reactive Descriptors
3.6.3. Antioxidant Property
3.7. Effects of FR and R on Caco2 and HT-29 Cells
3.8. The Effects of FR and R on Antioxidant Enzymes and Lipid Peroxidation in TBHP-Induced Caco2 and HT-29 Cells
3.9. Regulation of Nrf2 Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail? Oxidative Med. Cell. Longev. 2014, 2014, 427318. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Casas, A.I.; Nogales, C.; Mucke, H.A.M.; Petraina, A.; Cuadrado, A.; Rojo, A.I.; Ghezzi, P.; Jaquet, V.; Augsburger, F.; Dufrasne, F.; et al. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol. Rev. 2020, 72, 801–828. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, J.S.; Smirnova, I.S.; Pugovkina, N.A.; Ivanova, J.S.; Shilina, M.A.; Grinchuk, T.M.; Shatrova, A.N.; Aksenov, N.D.; Zenin, V.V.; Nikolsky, N.N.; et al. High Doses of Synthetic Antioxidants Induce Premature Senescence in Cultivated Mesenchymal Stem Cells. Sci. Rep. 2019, 9, 1296. [Google Scholar] [CrossRef]
- Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kumari, R.; Dhaka, N. Potential Applications of Antioxidants—A Review. J. Pharm. Res. 2013, 7, 828–835. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; De Lera, A.R.; Landrier, J.-F.; Rühl, R. Carotenoid Metabolites, Their Tissue and Blood Concentrations in Humans and Further Bioactivity via Retinoid Receptor-Mediated Signalling. Nutr. Res. Rev. 2023, 36, 498–511. [Google Scholar] [CrossRef]
- Traber, M.G.; Head, B. Vitamin E: How Much Is Enough, Too Much and Why! Free Radic. Biol. Med. 2021, 177, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Liu, X.; Li, J.; Zhang, J.; Liu, D. Chemical Constituents and Pharmacological Activities of Medicinal Plants from Rosa Genus. Chin. Herb. Med. 2022, 14, 187–209. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and Antioxidant Activity of Extracts from Rose Fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.C.Y.; Fu, X.-Q.; Guo, H.; Li, T.; Wu, Z.-Z.; Chan, K.; Yu, Z.-L. The Genus Rosa and Arthritis: Overview on Pharmacological Perspectives. Pharmacol. Res. 2016, 114, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.A.; Zhang, Y.; Teng, H.; Li, S.; Wang, F.; Peng, Z. Inhibitory Effect of Rosa rugosa Tea Extract on the Formation of Heterocyclic Amines in Meat Patties at Different Temperatures. Molecules 2016, 21, 173. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tang, D.; Zhao, H.; Xin, X.; Aisa, H.A. Hypoglycemic Effect of the Polyphenols Rich Extract from Rose rugosa Thunb on High Fat Diet and STZ Induced Diabetic Rats. J. Ethnopharmacol. 2017, 200, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.; You, Y.; Yoon, H.-G.; Kim, B.; Kim, K.; Lee, Y.-H.; Lee, J.; Chung, J.W.; Shim, S.; Jun, W. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress. J. Med. Food 2015, 18, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Baiyisaiti, A.; Wang, Y.; Zhang, X.; Chen, W.; Qi, R. Rosa rugosa Flavonoids Exhibited PPARα Agonist-like Effects on Genetic Severe Hypertriglyceridemia of Mice. J. Ethnopharmacol. 2019, 240, 111952. [Google Scholar] [CrossRef] [PubMed]
- Aksay, O.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS-Based Assessment of the Bioactive Compounds in Fresh and Fermented Caper (Capparis spinosa) Buds and Berries. Food Chem. 2021, 337, 127959. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Ma, Y.; Khan, I.; Yang, Y.; Li, Y.; Wang, Y.; Liu, G.; Zhang, Z.; Yang, P.; et al. Fermented Angelica Sinensis Activates Nrf2 Signaling and Modulates the Gut Microbiota Composition and Metabolism to Attenuate D-Gal Induced Liver Aging. Food Funct. 2023, 14, 215–230. [Google Scholar] [CrossRef]
- Gupta, R.; Goyal, R.; Bhattacharya, S.; Dhar, K.L. Antioxidative in Vitro and Antiosteoporotic Activities of Prinsepia Utilis Royle in Female Rats. Eur. J. Integr. Med. 2015, 7, 157–163. [Google Scholar] [CrossRef]
- Luo, A.; He, X.; Zhou, S.; Fan, Y.; He, T.; Chun, Z. In Vitro Antioxidant Activities of a Water-Soluble Polysaccharide Derived from Dendrobium nobile Lindl. Extracts. Int. J. Biol. Macromol. 2009, 45, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Son, Y.-O.; Kim, S.-S.; Jang, Y.-S.; Lee, J.-C. Antioxidant and Anti-Hyperglycemic Activity of Polysaccharide Isolated from Dendrobium chrysotoxum Lindl. J. Biochem. Mol. Biol. 2007, 40, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Tang, F.; Huang, Y.; Xu, F.; Chen, Y.; Tong, C.; Chen, H.; Bao, J. Analysis of Genotype × Environment Interactions for Polyphenols and Antioxidant Capacity of Rice by Association Mapping. J. Agric. Food Chem. 2014, 62, 5361–5368. [Google Scholar] [CrossRef] [PubMed]
- Oraei, M.; Panahirad, S.; Zaare-Nahandi, F.; Gohari, G. Pre-Véraison Treatment of Salicylic Acid to Enhance Anthocyanin Content of Grape (Vitis vinifera L.) Berries. J. Sci. Food Agric. 2019, 99, 5946–5952. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revison A.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93–99. [Google Scholar] [CrossRef]
- Rajan, V.K.; Hasna, C.K.; Muraleedharan, K. The Natural Food Colorant Peonidin from Cranberries as a Potential Radical Scavenger—A DFT Based Mechanistic Analysis. Food Chem. 2018, 262, 184–190. [Google Scholar] [CrossRef]
- Sadasivam, K.; Kumaresan, R. Antioxidant Behavior of Mearnsetin and Myricetin Flavonoid Compounds—A DFT Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Chattopadhyay, A. Nrf2–ARE Signaling in Cellular Protection: Mechanism of Action and the Regulatory Mechanisms. J. Cell. Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Marrella, M.; Hadj Saadoun, J.; Bernini, V.; Godani, F.; Dameno, F.; Neviani, E.; Lazzi, C. Development of Lactic Acid-Fermented Tomato Products. Microorganisms 2020, 8, 1192. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical Composition and Sensory Quality of Sauerkraut Produced from Different Cabbage Varieties. LWT 2021, 136, 110325. [Google Scholar] [CrossRef]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of Lactic Acid Fermentation-Based Biotransformation on Phenolic Profiles, Antioxidant Capacity and Flavor Volatiles of Apple Juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Nowak, R.; Olech, M.; Pecio, Ł.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, Antioxidant, Antimicrobial Properties and Chemical Composition of Rose Petals. J. Sci. Food Agric. 2014, 94, 560–567. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Wu, L.; Wang, F.; Li, L.; Zhang, S.; Sun, B. Qualitative and Quantitative Analysis of Phenolic Compounds in Blueberries and Protective Effects on Hydrogen Peroxide-Induced Cell Injury. J. Sep. Sci. 2021, 44, 2837–2855. [Google Scholar] [CrossRef]
- Monagas, M.; Urpi-Sarda, M.; Sánchez-Patán, F.; Llorach, R.; Garrido, I.; Gómez-Cordovés, C.; Andres-Lacueva, C.; Bartolomé, B. Insights into the Metabolism and Microbial Biotransformation of Dietary Flavan-3-Ols and the Bioactivity of Their Metabolites. Food Funct. 2010, 1, 233–253. [Google Scholar] [CrossRef]
- Márquez Campos, E.; Stehle, P.; Simon, M.-C. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019, 11, 2260. [Google Scholar] [CrossRef]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, H.; He, S.; Lou, Q.; Yu, M.; Tang, M.; Tu, L. Metabolism and Prebiotics Activity of Anthocyanins from Black Rice (Oryza sativa L.) in Vitro. PLoS ONE 2018, 13, e0195754. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Dai, J.; Tian, J.; Jiang, Q.; Zhang, Y.; Ren, G.; Song, B.; Wang, M.; Saiwaidoula, M.; Dong, W.; et al. The Isolation of Anthocyanin Monomers from Blueberry Pomace and Their Radical-Scavenging Mechanisms in DFT Study. Food Chem. 2023, 418, 135872. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.R.; Kim, I.; Lee, J. Phenolic Composition and Antioxidant Activity of Purple Sweet Potato (Ipomoea batatas (L.) Lam.): Varietal Comparisons and Physical Distribution. Antioxidants 2021, 10, 462. [Google Scholar] [CrossRef]
- Pal, R.; Chattaraj, P.K. Electrophilicity Index Revisited. J. Comput. Chem. 2023, 44, 278–297. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Kakkar, R. The Antioxidant Potential of Retrochalcones Isolated from Liquorice Root: A Comparative DFT Study. Phytochemistry 2021, 192, 112964. [Google Scholar] [CrossRef]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Mendoza-Wilson, A.M.; Armenta-Vázquez, M.E.; Castro-Arredondo, S.I.; Espinosa-Plascencia, A.; Robles-Burgueño, M.d.R.; González-Ríos, H.; González-León, A.; Balandrán-Quintana, R.R. Potential of Polyphenols from an Aqueous Extract of Apple Peel as Inhibitors of Free Radicals: An Experimental and Computational Study. J. Mol. Struct. 2013, 1035, 61–68. [Google Scholar] [CrossRef]
- Škorňa, P.; Michalík, M.; Klein, E. Gallic Acid: Thermodynamics of the Homolytic and Heterolytic Phenolic O–H Bonds Splitting-Off. Acta Chim. Slovaca 2016, 9, 114–123. [Google Scholar] [CrossRef]
- Nenadis, N.; Samara, E.; Mantzouridou, F.T. On the Role of the Carboxyl Group to the Protective Effect of O-Dihydroxybenzoic Acids to Saccharomyces cerevisiae Cells upon Induced Oxidative Stress. Antioxidants 2022, 11, 161. [Google Scholar] [CrossRef]
- Sung, C.-C.; Hsu, Y.-C.; Chen, C.-C.; Lin, Y.-F.; Wu, C.-C. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2013, 2013, 301982. [Google Scholar] [CrossRef]
- Peciulyte, A.; Samuelsson, L.; Olsson, L.; McFarland, K.C.; Frickmann, J.; Østergård, L.; Halvorsen, R.; Scott, B.R.; Johansen, K.S. Redox Processes Acidify and Decarboxylate Steam-Pretreated Lignocellulosic Biomass and Are Modulated by LPMO and Catalase. Biotechnol. Biofuels 2018, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Vomund, S.; Schäfer, A.; Parnham, M.J.; Brüne, B.; von Knethen, A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017, 18, 2772. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Ni, S.; Yang, Z.; Liu, R. Oxidative Stress Induces Chondrocyte Apoptosis through Caspase-Dependent and Caspase-Independent Mitochondrial Pathways and the Antioxidant Mechanism of Angelica Sinensis Polysaccharide. Oxidative Med. Cell. Longev. 2020, 2020, 3240820. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Rana, M.R.; Zzaman, W.; Ara, R.; Aziz, M.G. Optimization of Substrate Composition for Pectinase Production from Satkara (Citrus macroptera) Peel Using Aspergillus niger-ATCC 1640 in Solid-State Fermentation. Heliyon 2021, 7, e08133. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a Feasible Strategy for Enhancing Bioactivity of Herbal Medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, S.; Yang, Z.; Zheng, T.; Li, P.; Zhou, Q.; Cai, W.; Wang, Y.; Zhang, J.; Ji, X.; et al. Effects of a Novel Microbial Fermentation Medium Produced by Tremella aurantialba SCT-F3 on Cigar Filler Leaf. Front. Microbiol. 2023, 14, 1267916. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of Lactobacillus Strains on Phenolic Profile, Color Attributes and Antioxidant Activities of Lactic-Acid-Fermented Mulberry Juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M.; Curiel, J.A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Aryl Glycosidases from Lactobacillus Plantarum Increase Antioxidant Activity of Phenolic Compounds. J. Funct. Foods 2014, 7, 322–329. [Google Scholar] [CrossRef]
- Svensson, L.; Sekwati-Monang, B.; Lutz, D.L.; Schieber, A.; Gänzle, M.G. Phenolic Acids and Flavonoids in Nonfermented and Fermented Red Sorghum (Sorghum bicolor (L.) Moench). J. Agric. Food Chem. 2010, 58, 9214–9220. [Google Scholar] [CrossRef]
- Park, H.; Kim, H.-S.; Eom, S.J.; Kim, K.-T.; Paik, H.-D. Antioxidative and Anticanceric Activities of Magnolia (Magnolia Denudata) Flower Petal Extract Fermented by Pediococcus Acidilactici KCCM 11614. Molecules 2015, 20, 12154–12165. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Paik, H.-D. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds. J. Microbiol. Biotechnol. 2017, 27, 869–877. [Google Scholar] [CrossRef]
- Verediano, T.A.; Stampini Duarte Martino, H.; Dias Paes, M.C.; Tako, E. Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients 2021, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
- Socha, R.; Juszczak, L.; Pietrzyk, S.; Fortuna, T. Antioxidant Activity and Phenolic Composition of Herbhoneys. Food Chem. 2009, 113, 568–574. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, X.; Shi, H.; Song, Y.; Bian, C.; Guo, A. Assessment of the Physicochemical Properties and Bacterial Composition of Lactobacillus Plantarum and Enterococcus Faecium-Fermented Astragalus Membranaceus Using Single Molecule, Real-Time Sequencing Technology. Sci. Rep. 2018, 8, 11862. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. Antioxidant Activity, Total Polyphenol, Flavonoid and Tannin Contents of Fermented Green Coffee Beans with Selected Yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Zhang, H.; Qu, G.; Li, C.; Liu, L. Biotransformation of Polyphenols in Apple Pomace Fermented by β-Glucosidase-Producing Lactobacillus Rhamnosus L08. Foods 2021, 10, 1343. [Google Scholar] [CrossRef] [PubMed]
- Youwei, Z.; Yonghong, P. Changes in Antioxidant Activity in Rosa rugosa Flowers at Different Stages of Development. N. Z. J. Crop Hortic. Sci. 2007, 35, 397–401. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, 2017, e7941347. [Google Scholar] [CrossRef]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic Compounds Extracted by Acidic Aqueous Ethanol from Berries and Leaves of Different Berry Plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xu, F.; Zhang, Y.; Zang, X.; Wang, D.; Shang, M.; Wang, X.; Chui, D.; Cai, S. The Profiling and Identification of the Metabolites of (+)-catechin and Study on Their Distribution in Rats by HPLC-DAD-ESI-IT-TOF-MSn Technique. Biomed. Chromatogr. 2014, 28, 401–411. [Google Scholar] [CrossRef]
- Fernandes, I.; Nave, F.; Gonçalves, R.; de Freitas, V.; Mateus, N. On the Bioavailability of Flavanols and Anthocyanins: Flavanol–Anthocyanin Dimers. Food Chem. 2012, 135, 812–818. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological Effects of Protocatechuic Acid and Its Therapeutic Potential in Neurodegenerative Diseases: Review on the Basis of in Vitro and in Vivo Studies in Rodents and Humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Won, T.J.; Nam, S.Y.; Kim, Y.; Lee, Y.C.; Park, S.; Park, H.Y.; Hwang, K.W.; Lee, D.I. Therapeutic Advantages of Medicinal Herbs Fermented with Lactobacillus plantarum, in Topical Application and Its Activities on Atopic Dermatitis. Phytother. Res. 2009, 23, 913–919. [Google Scholar] [CrossRef]
- Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. The Bioavailability of Apigenin-7-Glucoside Is Influenced by Human Intestinal Microbiota in Rats123. J. Nutr. 2009, 139, 1095–1102. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and Prebiotic Activity of Five Peonidin-Based Anthocyanins Extracted from Purple Sweet Potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, J.; Zhi, Q.; Yuan, T.; Lei, X.; Zeng, K.; Ming, J. Anti-Aging Effects of the Fermented Anthocyanin Extracts of Purple Sweet Potato on Caenorhabditis elegans. Food Funct. 2021, 12, 12647–12658. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, N.-A.; Roudsari, N.M.; Momtaz, S.; Abdolghaffari, A.H.; Atkin, S.L.; Sahebkar, A. Regulatory Mechanisms of Vanillic Acid in Cardiovascular Diseases: A Review. Curr. Med. Chem. 2023, 30, 2562–2576. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Phelps, C.D.; Young, L.Y. Microbial Metabolism of the Plant Phenolic Compounds Ferulic and Syringic Acids under Three Anaerobic Conditions. Microb. Ecol. 1997, 33, 206–215. [Google Scholar] [CrossRef]
- Kropat, C.; Mueller, D.; Boettler, U.; Zimmermann, K.; Heiss, E.H.; Dirsch, V.M.; Rogoll, D.; Melcher, R.; Richling, E.; Marko, D. Modulation of N Rf2-dependent Gene Transcription by Bilberry Anthocyanins in Vivo. Mol. Nutr. Food Res. 2013, 57, 545–550. [Google Scholar] [CrossRef]
- Juadjur, A.; Mohn, C.; Schantz, M.; Baum, M.; Winterhalter, P.; Richling, E. Fractionation of an Anthocyanin-Rich Bilberry Extract and in Vitro Antioxidative Activity Testing. Food Chem. 2015, 167, 418–424. [Google Scholar] [CrossRef]
- Van Breda, S.; Briedé, J.; De Kok, T. Improved Preventive Effects of Combined Bioactive Compounds Present in Different Blueberry Varieties as Compared to Single Phytochemicals. Nutrients 2018, 11, 61. [Google Scholar] [CrossRef]
- Wei, B.; Peng, Z.; Zheng, W.; Yang, S.; Wu, M.; Liu, K.; Xiao, M.; Huang, T.; Xie, M.; Xiong, T. Probiotic-Fermented Tomato Alleviates High-Fat Diet-Induced Obesity in Mice: Insights from Microbiome and Metabolomics. Food Chem. 2024, 436, 137719. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Escrivá, C.; Dromant, M.; Borrás, C.; Viña, J. Lipid Peroxidation as Measured by Chromatographic Determination of Malondialdehyde. Human Plasma Reference Values in Health and Disease. Arch. Biochem. Biophys. 2021, 709, 108941. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D. Glutathione and Glutathione-Dependent Enzymes: From Biochemistry to Gerontology and Successful Aging. Ageing Res. Rev. 2023, 92, 102066. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D.A. Chapter Five—The Antioxidant Glutathione. In Vitamins and Hormones; Litwack, G., Ed.; Antioxidants; Academic Press: Cambridge, MA, USA, 2023; Volume 121, pp. 109–141. [Google Scholar]
- Akbari, M.; Razavi, S.H.; Khodaiyan, F.; Blesa, J.; Esteve, M.J. Fermented Corn Bran: A by-Product with Improved Total Phenolic Content and Antioxidant Activity. LWT 2023, 184, 115090. [Google Scholar] [CrossRef]
Compounds | Standard Curves | Linear Correlation (r2) | LOD (μg/L) | LOQ (μg/L) | Recovery (%) (n = 3) | Precision (%) (n = 3) |
---|---|---|---|---|---|---|
Epicatechin | y = 9933.9 * x + 1813.8 | 0.9944 | 13.0 | 40.0 | 98.5 ± 2.1 | 1.5 |
Catechin | y = 3046.2 * x + 1979.1 | 0.9920 | 20.0 | 60.0 | 98.9 ± 2.4 | 1.1 |
ProcyanidinB2 | y = 32.62 * x + 17,260.0 | 0.9990 | 1.1 | 5.0 | 99.9 ± 2.9 | −12.1 |
Kaempferol | y = 31.7 * x + 9797.9 | 0.9998 | 81 | 243 | 98.4 ± 2.3 | 1.6 |
Isorhamnetin | y = 123.9 * x – 16,219.2 | 0.9988 | 14.1 | 45.0 | 100.5 ± 2.1 | 9.4 |
Hyperoside | y = 18.1 * x + 98,205.5 | 0.9941 | 21.0 | 63.8 | 98.3 ± 3.8 | −8.6 |
Quercetin | y = 45.0 * x + 3048.0 | 0.9999 | 0.7 | 2.0 | 98.9 ± 1.2 | −14.6 |
Epicatechin gallate | y = 1.7 * x + 5058.4 | 0.9918 | 78.0 | 210.0 | 99.9 ± 1.2 | 4.6 |
Cyanidin-3-O-glucoside | y = 0.03 * x + 209.9 | 0.9998 | 6000.0 | 15,000.0 | 99.8 ± 4.0 | 6.3 |
Gallic acid | y = 134.4 * x + 37,077.2 | 0.9976 | 0.9 | 3.0 | 99.5 ± 1.5 | −6.2 |
Syringic acid | y = 0.4 * x + 149.1 | 0.9991 | 100.0 | 330.0 | 99.5 ± 0.79 | −3.5 |
Vanillic acid | y = 0.2 * x + 124.3 | 0.9999 | 613.0 | 1840.0 | 100.6 ± 2.3 | −2.1 |
Protocatechuic acid | y = 443,933.2 * x + 345,006.1 | 0.9914 | 20.0 | 60.0 | 101.9 ± 3.9 | −18.0 |
Caffeic acid | y = 13.6 * x − 151.1 | 0.9999 | 25.0 | 75.0 | 99.9 ± 2.4 | 4.3 |
4 hydroxybenzoic acid | y = 1056.9 * x + 923.8 | 0.9997 | 1.0 | 5.0 | 99.9 ± 4.0 | 0.7 |
Ferulic acid | y = 70.4 * x − 53.8 | 0.9999 | 1.0 | 5.0 | 99.2 ± 2.4 | −12.9 |
Chlorogenic acid | y = 1.2 * x − 543.1 | 0.9996 | 310.4 | 1000.0 | 100.2 ± 4.2 | −15.4 |
Compounds | Content (μg g−1 DW) | |
---|---|---|
R | FR | |
Flavonoids | ||
Epicatechin | 116.5 ± 1.6 | 198.1 ± 6.2 |
Catechin | 172.0 ± 11.2 | 612.4 ± 22.0 ** |
ProcyanidinB2 | 829.0 ± 34.0 | 638.1 ± 38. 8 *** |
Kaempferol | 289.0 ± 10.3 | 336.7 ± 16.7 |
Isorhamnetin | 192.9 ± 0.3 | 215.9 ± 0.3 |
Hyperoside | 588.9 ± 6.4 | 419.6 ± 2.0 |
Quercetin | 229.2 ± 3.2 | 419.6 ± 1.1 |
Epicatechin gallate | 2085.3 ± 20.1 | 1402.9 ± 15.8 |
Cyanidin-3-O-glucoside | 757.2 ± 12.43 | 435.2 ± 15.26 **** |
Phenolic acids | ||
Gallic acid | 1153.1 ± 9.2 | 2503.8 ± 15.0 ** |
Syringic acid | 181.3 ± 23.48 | 550.3 ± 37.6 ** |
Vanillic acid | 179.7 ± 7.8 | 196.4 ± 3.0 |
Protocatechuic acid | 279.9 ± 6.4 | 311.0 ± 5.6 ** |
Caffeic acid | 252.8 ± 5.8 | 313.2 ± 22.8 |
4 hydroxybenzoic acid | 15.4 ± 3.8 | 17.8 ± 0.2 |
Ferulic acid | 13.0 ± 1.6 | 8.6 ± 1.2 |
Chlorogenic acid | 458.2 ± 2.0 | 458.8 ± 1.4 |
Descriptor Kcal mol−1 | Position | BDE | IP | PDE | PA1 | ETE |
---|---|---|---|---|---|---|
C3G | 4′-OH | 90 | 101 | 2 | 24 | 79 |
PB2 | 4′-OH | 84 | 85 | 12 | 85 | 12 |
CATE | 4′-OH | 84 | 92 | 5 | 32 | 65 |
GA | 3-OH | 82 | − | 7 | 46 | 80 |
4-OH | 76 | 119 | 1 | 37 | 83 | |
5-OH | 79 | − | 4 | 40 | 84 | |
PA | 4′-OH | 80.6 | 95.3 | 7.62 | 31.4 | 71.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, J.; Yang, H.; Ma, Y.; Huo, Z.; Wang, S.; Lin, Y.; Zhang, C. Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation. Fermentation 2024, 10, 368. https://doi.org/10.3390/fermentation10070368
Li J, Li J, Yang H, Ma Y, Huo Z, Wang S, Lin Y, Zhang C. Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation. Fermentation. 2024; 10(7):368. https://doi.org/10.3390/fermentation10070368
Chicago/Turabian StyleLi, Jiaru, Junxiang Li, Hui Yang, Yuchan Ma, Zeqi Huo, Shutao Wang, Yang Lin, and Chunjiang Zhang. 2024. "Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation" Fermentation 10, no. 7: 368. https://doi.org/10.3390/fermentation10070368
APA StyleLi, J., Li, J., Yang, H., Ma, Y., Huo, Z., Wang, S., Lin, Y., & Zhang, C. (2024). Enhancing Antioxidant Bioaccessibility in Rosa rugosa through Lactobacillus plantarum Fermentation. Fermentation, 10(7), 368. https://doi.org/10.3390/fermentation10070368