Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Reagents, and Culture Media
2.2. Cultivation of C. trogii MUT3379 and Optimization of Laccase Production
2.3. Laccase Production Monitoring
2.4. Laccase Production and Purification
2.5. Laccase Identification by Tandem Mass Spectrometry
2.6. Substrate Range
2.7. Kinetic Properties
3. Results
3.1. Fermentation Process Development
3.2. Laccase Purification
3.3. Identification of Lac3379-1 by Proteomic Analysis
3.4. Lac3379-1 Characterization
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hertwich, E.G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 2021, 14, 151–155. [Google Scholar] [CrossRef]
- Molina-Espeja, P.; Sanz-Aparicio, J.; Golyshin, P.N.; Robles-Martín, A.; Guallar, V.; Beltrametti, F.; Müller, M.; Yakimov, M.M.; Modregger, J.; van Logchem, M.; et al. Enzymes for consumer products to achieve climate neutrality. Oxford Open Clim. Chang. 2023, 3, kgad003. [Google Scholar] [CrossRef]
- OECD. Industrial Biotechnology and Climate Change; OECD: Paris, France, 2022; pp. 1–38. [Google Scholar]
- Wösten, H.A.B. Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 2019, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lübeck, M. Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms 2022, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Baldrian, P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-degrading enzymes. FEBS J. 2015, 282, 1190–1213. [Google Scholar] [CrossRef] [PubMed]
- Bentil, J.A. Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. Sci. Afr. 2021, 11, e00717. [Google Scholar] [CrossRef]
- Boyle, C.D.; Kropp, B.R.; Reid, I.D. Solubilization and mineralization of lignin by white rot fungi. Appl. Environ. Microbiol. 1992, 58, 3217–3224. [Google Scholar] [CrossRef]
- Jones, S.M.; Solomon, E.I. Electron Transfer and Reaction Mechanism of Laccases. Cell Mol Life 2015, 72, 869–883. [Google Scholar] [CrossRef]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar] [PubMed]
- Moreno, A.D.; Ibarra, D.; Eugenio, M.E.; Tomás-Pejó, E. Laccases as versatile enzymes: From industrial uses to novel applications. J. Chem. Technol. Biotechnol. 2020, 95, 481–494. [Google Scholar] [CrossRef]
- Agrawal, K.; Chaturvedi, V.; Verma, P. Fungal laccase discovered but yet undiscovered. BioResources 2018, 5, 4. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef]
- Curran, L.M.C.L.K.; Pham, L.T.M.; Sale, K.L.; Simmons, B.A. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol. Adv. 2021, 54, 107809. [Google Scholar]
- Martani, F.; Beltrametti, F.; Porro, D.; Branduardi, P.; Lotti, M. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol. Lett. 2017, 364, 1–18. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, J. Fermenting and Lignin Degradability of a White-Rot Fungus Coriolopsis trogii Using Industrial Lignin as Substrate. Appl. Biochem. Biotechnol. 2022, 194, 5220–5235. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S. Phenol-Sulfuric Acid Method for Total Carbohydrates; Food Science Texts Series; Springer: Boston, MA, USA, 2010; pp. 171–177. [Google Scholar]
- Martini, M.C.; Berini, F.; Ausec, L.; Casciello, C.; Vacca, C.; Pistorio, M.; Lagares, A.; Mandic-Mulec, I.; Marinelli, F.; Del Papa, M.F. Identification and Characterization of a Novel Plasmid-Encoded Laccase-Like Multicopper Oxidase from Ochrobactrum sp. BF15 Isolated from an On-Farm Bio-Purification System. Food Technol. Biotechnol. 2021, 59, 519–529. [Google Scholar] [CrossRef]
- Berini, F.; Verce, M.; Ausec, L.; Rosini, E.; Tonin, F.; Pollegioni, L.; Mandić-Mulec, I. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl. Microbiol. Biotechnol. 2018, 102, 2425–2439. [Google Scholar] [CrossRef] [PubMed]
- Ausec, L.; Berini, F.; Casciello, C.; Cretoiu, M.S.; van Elsas, J.D.; Marinelli, F.; Mandic-Mulec, I. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl. Microbiol. Biotechnol. 2017, 101, 6261–6276. [Google Scholar] [CrossRef]
- Pible, O.; Allain, F.; Jouffret, V.; Culotta, K.; Miotello, G.; Armengaud, J. Estimating relative biomasses of organisms in microbiota using ‘phylopeptidomics’. Microbiome 2020, 8, 30. [Google Scholar] [CrossRef]
- De Groot, A.; Dulermo, R.; Ortet, P.; Blanchard, L.; Guérin, P.; Fernandez, B.; Vacherie, B.; Dossat, C.; Jolivet, E.; Siguier, P.; et al. Alliance of proteomics and genomics to unravel the specificities of sahara bacterium Deinococcus deserti. PLoS Genet. 2009, 5, e1000434. [Google Scholar] [CrossRef] [PubMed]
- Durán-Sequeda, D.; Suspes, D.; Maestre, E.; Alfaro, M.; Perez, G.; Ramírez, L.; Pisabarro, A.G.; Sierra, R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J. Fungi 2022, 8, 7. [Google Scholar] [CrossRef]
- Lu, X.; Ding, S. Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 2010, 51, 68–74. [Google Scholar] [CrossRef]
- Chenthamarakshan, A.; Parambayil, N.; Miziriya, N.; Soumya, P.S.; Lakshmi, M.S.K.; Ramgopal, A.; Dileep, A.; Nambisan, P. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnol. 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Scale-Up of Microbial Fermentation Process. In Manual of Industrial Microbiology and Biotechnology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 669–675. [Google Scholar]
- Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 832. [Google Scholar] [CrossRef]
- Tauber, H. Oxidation of pyrogallol to purpurogallin by crystallin catalase. J. Biol. Chem. 1953, 205, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Maskos, Z.; Rush, J.D.; Koppenol, W.H. The hydroxylation of phenylalanine and tyrosine: A comparison with salicylate and tryptophan. Arch. Biochem. Biophys. 1992, 296, 521–529. [Google Scholar] [CrossRef]
- Leonowicz, A.; Matuszewska, A.; Luterek, J.; Ziegenhagen, D.; Wojtaś-Wasilewska, M.; Cho, N.-S.; Hofrichter, M.; Rogalski, J. Biodegradation of lignin by white rot fungi. Fungal Genet. Biol. 1999, 27, 175–185. [Google Scholar] [CrossRef]
- Cannatelli, M.D.; Ragauskas, A.J. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. Chem. Rec. 2017, 17, 122–140. [Google Scholar] [CrossRef]
- Palmieri, G.; Giardina, P.; Bianco, C.; Fontanella, B.; Sannia, G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 2000, 66, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Muniraj, I.K.; Purushothaman, N.; Sekar, A.; Sharmila DJ, S.; Kumarasamy, R.; Uthandi, S. High level secretion of laccase (LccH) from a newly isolated white-rot basidiomycete, Hexagonia hirta MSF2. Front. Microbiol. 2016, 7, 707. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, A.; Giardina, P.; Lettera, V.; Pezzella, C.; Sannia, G.; Faraco, V. Induction and Transcriptional Regulation of Laccases in Fungi. Curr. Genom. 2011, 12, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Converti, A.; Zilli, M.; Arni, S.; Di Felice, R.; Del Borghi, M. Estimation of viscosity of highly viscous fermentation media containing one or more solutes. Biochem. Eng. J. 1999, 4, 81–85. [Google Scholar] [CrossRef]
- An, Q.; Zhou, Z.-G.; Wang, Y.-H.; Guo, S.; Chen, Z.; Yuan, Y.-N.; Sun, X.-Q.; Yang, Y.-L.; Zhang, T.-X.; Han, M.-L. Laccase Produced by Coriolopsis trogii and Cerrena unicolor with the Mixed of Metal Ions and Lignocellulosic Materials. BioResources 2023, 18, 3895–3908. [Google Scholar] [CrossRef]
- Bao, C.; Liu, Y.; Li, F.; Cao, H.; Dong, B.; Cao, Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl. Biochem. Biotechnol. 2023, 195, 6150–6167. [Google Scholar] [CrossRef] [PubMed]
- Daâssi, D.; Zouari-Mechichi, H.; Frikha, F.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. J. Environ. Health Sci. Eng. 2016, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Songulashvili, G.; Flahaut, S.; Demarez, M.; Tricot, C.; Bauvois, C.; Debaste, F.; Penninckx, M.J. High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biol. 2016, 120, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, L.; Han, Z.; Luo, S.; Wu, A.; Xie, J. Selection of high laccase-producing Coriolopsis gallica strain T906: Mutation breeding, strain characterization, and features of the extracellular laccases. J. Microbiol. Biotechnol. 2016, 26, 1570–1578. [Google Scholar] [CrossRef]
- Lorsch, J.R. Practical Steady-State Enzyme Kinetics, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 536, pp. 3–15. [Google Scholar]
- Díaz, R.; Saparrat, M.C.N.; Jurado, M.; García-Romera, I.; Ocampo, J.A.; Martínez, M.J. Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production. Appl. Microbiol. Biotechnol. 2010, 88, 133–142. [Google Scholar] [CrossRef]
- Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with laccases: An updated overview. Catalysts 2021, 11, 26. [Google Scholar] [CrossRef]
- Zouari-Mechichi, H.; Benali, J.; Alessa, A.H.; Hadrich, B.; Mechichi, T. Efficient Decolorization of the Poly-Azo Dye Sirius Grey by Coriolopsis gallica Laccase-Mediator System: Process Optimization and Toxicity Assessment. Molecules 2024, 29, 477. [Google Scholar] [CrossRef] [PubMed]
- de Boer, S.R.; Schäffer, A.; Moreira, M.T. Towards oxidoreductase-based processes for the removal of antibiotics from wastewater. Rev. Environ. Sci. Biotechnol. 2023, 22, 899–932. [Google Scholar] [CrossRef]
- Wang, X.; Meng, F.; Zhang, B.; Xia, Y. Elimination of tetracyclines in seawater by laccase-mediator system. Chemosphere 2023, 333, 138916. [Google Scholar] [CrossRef] [PubMed]
- Christopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Front. Energy Res. 2014, 2, 12. [Google Scholar] [CrossRef]
- Agustin, M.B.; de Carvalho, D.M.; Lahtinen, M.H.; Hilden, K.; Lundell, T.; Mikkonen, K.S. Laccase as a Tool in Building Advanced Lignin-Based Materials. ChemSusChem 2021, 14, 4615–4635. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Rencoret, J.; Del Río, J.C.; Martínez, A.T.; Gutiérrez, A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels 2014, 7, 6. [Google Scholar] [CrossRef]
- Baliarsingh, S.; Jena, J.; Das, T.; Das, N.B. Role of cationic and anionic surfactants in textile dyeing with natural dyes extracted from waste plant materials and their potential antimicrobial properties. Ind. Crops Prod. 2013, 50, 618–624. [Google Scholar] [CrossRef]
- Couto, S.R.; Toca-herrera, J.L. Lacasses in the textile industry. Biotechnol. Mol. Biol. Rev. 2006, 1, 115–120. [Google Scholar]
- Li, Y.; Liao, X.; Huling, S.G.; Xue, T.; Liu, Q.; Cao, H.; Lin, Q. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil. Sci. Total Environ. 2019, 647, 1106–1112. [Google Scholar] [CrossRef]
- Lamichhane, S.; Krishna, K.C.B.; Sarukkalige, R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. J. Environ. Manag. 2017, 199, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Du, H.; Peng, X.; Tang, Y.; Zhou, Y.; Chen, X.; Fei, J.; Meng, Y.; Yuan, L. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. Sci. Total Environ. 2020, 708, 134970. [Google Scholar] [CrossRef] [PubMed]
- Bautista, L.F.; Morales, G.; Sanz, R. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 2015, 136, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, Y.; Niu, J.; Chen, D.; Chagan, I. Laccase produced by a thermotolerant strain of Trametes trogii LK13. Braz. J. Microbiol. 2015, 46, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cen, Q.; Wu, X.; Cao, L.; Lu, Y.; Lu, X.; Chen, J.; Fu, G.; Liu, Y.; Ruan, R. Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal. AMB Express 2022, 12, 96. [Google Scholar] [CrossRef]
Purification Step | Volume (mL) | Total Activity (U) | Total Protein (mg) | Specific Activity (U mg−1) | Yield (%) | Purification Fold |
---|---|---|---|---|---|---|
Culture filtrate | 60 | 13,700 | 61 | 226 | 10 | 1 |
(NH4)2SO4 precipitation | 6 | 11,200 | 37 | 303.4 | 82 | 1.3 |
Ion-exchange chromatography | 6 | 10,900 | 22 | 494.3 | 79 | 2.2 |
Substrate | Km (μM) | kcat (s−1) | kcat/Km (s−1 μM−1) |
---|---|---|---|
ABTS | 2.6 ± 0.6 | 154.1 ± 0.8 | 58.4 ± 13 |
2,6-DMP | 105.5 ± 8 | 27.5 ± 0.6 | 0.26 ± 0.02 |
K4Fe(CN)6 | 76.9 ± 14 | 2.2 ± 0.07 | 0.029 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mellere, L.; Bellasio, M.; Berini, F.; Marinelli, F.; Armengaud, J.; Beltrametti, F. Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production. Fermentation 2024, 10, 376. https://doi.org/10.3390/fermentation10070376
Mellere L, Bellasio M, Berini F, Marinelli F, Armengaud J, Beltrametti F. Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production. Fermentation. 2024; 10(7):376. https://doi.org/10.3390/fermentation10070376
Chicago/Turabian StyleMellere, Luca, Martina Bellasio, Francesca Berini, Flavia Marinelli, Jean Armengaud, and Fabrizio Beltrametti. 2024. "Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production" Fermentation 10, no. 7: 376. https://doi.org/10.3390/fermentation10070376
APA StyleMellere, L., Bellasio, M., Berini, F., Marinelli, F., Armengaud, J., & Beltrametti, F. (2024). Coriolopsis trogii MUT3379: A Novel Cell Factory for High-Yield Laccase Production. Fermentation, 10(7), 376. https://doi.org/10.3390/fermentation10070376