Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Variety Selection and Harvest
2.2. Juice Extraction and Fermentation Conditions
2.3. Physicochemical Standard Analysis
2.4. Color and Phenolic Indexes
2.5. Analysis of Aroma Composition by GC-FID
2.6. Microbiological Analysis of Ferments
2.7. Statistical Analysis and Primary Data
2.7.1. Nonparametric Statistics
2.7.2. Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC)
3. Results and Discussion
3.1. Grape Juice Yield and Chemical Composition
3.2. Yeast Isolation and Identification
3.3. Physicochemical Analysis
3.4. Spectrophotometric Determinations
3.5. Volatile Compounds Production
4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harutyunyan, M.; Malfeito-Ferreira, M. The rise of wine among ancient civilizations across the Mediterranean basin. Heritage 2022, 5, 788–812. [Google Scholar] [CrossRef]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Musayev, M.; Goryslavets, S.; Zdunić, G.; Bert, P.-F.; et al. Dual domestications and origin of traits in grapevine evolution. Science 2023, 379, 892–901. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early Neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, 114, E10309–E10318. [Google Scholar] [CrossRef] [PubMed]
- Sagona, A. The Archaeology of the Caucasus: From Earliest Settlements to the Iron Age; Cambridge World Archaeology Series; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar]
- Batiuk, S. Caucasian cocktails: The early use of alcohol in “The Cradle of Wine”. In The Routledge Companion to Ecstatic Experience in the Ancient World; Stein, D., Costello, S.K., Foster, K.P., Eds.; Routledge: London, UK; New York, NY, USA, 2021; pp. 101–120. [Google Scholar]
- Badalyan, R.; Chataigner, C.; Harutyunyan, A. (Eds.) The Neolithic Settlement of Aknashen (Ararat Valley, Armenia): Excavation Seasons 2004–2015; Archaeopress Publishing: Oxford, UK, 2022. [Google Scholar]
- Barnard, H.; Dooley, A.N.; Areshian, G.; Gasparyan, B.; Faull, K.F. Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern highlands. J. Archaeol. Sci. 2011, 38, 977–984. [Google Scholar] [CrossRef]
- Hobosyan, S.; Gasparyan, B.; Harutyunyan, H.; Saratikyan, A.; Amirkhanyan, A. Armenian Culture of Vine and Wine; Publishing House of the Institute of Archaeology and Ethnography: Yerevan, Armenia, 2021. [Google Scholar]
- Guerra-Doce, E. Exploring the significance of beaker pottery through residue analyses. Oxf. J. Archaeol. 2006, 25, 247–259. [Google Scholar] [CrossRef]
- Jorge, A. Technological insights into Bell-Beakers: A case study from the Mondego Plateau, Portugal. In Interpreting Silent Artefacts: Petrographic Approaches to Archaeological Ceramics; Quinn, P.S., Ed.; Archaeopress: Oxford, UK, 2009; pp. 25–46. [Google Scholar]
- Cubas, M.; Bolado del Castillo, R.; Pereda Rosales, E.M.; Fernández Vega, P.Á. La cerámica en Cantabria desde su aparición (5000 cal BC) hasta el final de la Prehistoria: Técnicas de manufactura y características morfo-decorativas. Munibe. Antropol.-Arkeol. 2013, 64, 69–88. [Google Scholar]
- Rojo-Guerra, M.Á.; Garrido-Pena, R.; García-Martínez-de-Lagrán, Í.; Juan-Treserras, J.; Matamala, J.C. Beer and bell beakers: Drinking rituals in Copper Age inner Iberia. Proc. Prehist. Soc. 2006, 72, 243–265. [Google Scholar] [CrossRef]
- Delibes de Castro, G.; Guerra-Doce, E.; Tresserras-Juan, J. Testimonios de consumo de cerveza durante la Edad del Cobre en la Tierra de Olmedo (Valladolid). In Castilla y el Mundo Feudal: Homenaje al Profesor Julio Valdeón; del Val Valdivieso, M.I., Martínez Sopena, P., Eds.; Junta de Castilla y León: Valladolid, Spain, 2009; Volume 3, pp. 585–599. [Google Scholar]
- Case, H. Beakers and the Beaker culture. In Similar but Different: Bell Beakers in Europe, 2nd ed.; Czebreszuk, J., Ed.; Sidestone Press: Leiden, The Netherlands, 2014; pp. 11–34. [Google Scholar]
- Salanova, L.; Prieto-Martínez, M.P.; Clop-García, X.; Convertini, F.; Lantes-Suárez, O.; Martínez-Cortizas, A. What are large-scale Archaeometric programmes for? Bell beaker pottery and societies from the third millennium BC in Western Europe. Archaeometry 2016, 58, 722–735. [Google Scholar] [CrossRef]
- Rivero, D.G.; Núñez, J.M.J.; Taylor, R. Bell Beaker and the evolution of resource management strategies in the southwest of the Iberian Peninsula. J. Archaeol. Sci. 2016, 72, 10–24. [Google Scholar] [CrossRef]
- Guerra-Doce, E. The earliest toasts: Archaeological evidence of the social and cultural construction of alcohol in prehistoric Europe. In Alcohol and Humans: A Long and Social Affair; Hockings, K., Dunbar, R., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 60–80. [Google Scholar]
- Garrido-Pena, R.; Rojo-Guerra, M.A.; García-Martínez de Lagrán, I.; Tejedor-Rodríguez, C. Drinking and eating together: The social and symbolic context of commensality rituals in the Bell Beakers of the interior of Iberia (2500–2000 cal BC). In Guess Who’s Coming to Dinner: Feasting Rituals in the Prehistoric Societies of Europe and the Near East; Aranda Jiménez, G., Montón-Subías, S., Sánchez-Romero, M., Eds.; Oxbow Books: Oxford, UK, 2011; pp. 109–129. [Google Scholar]
- Garrido-Pena, R. Bell-Beakers in Iberia. In Iberia. Protohistory of the Far West of Europe: From Neolithic to Roman Conquest; Almagro-Gorbea, M., Ed.; Universidad de Burgos and Fundación Atapuerca: Burgos, Spain, 2014; pp. 113–124. [Google Scholar]
- Garrido-Pena, R. Living with Beakers in the interior of Iberia. In Bell Beaker Settlement of Europe: The Bell Beaker Phenomenon from a Domestic Perspective; Prehistoric Society Research Paper 9; Gibson, A.M., Ed.; Oxbow Books: Oxford, UK, 2019; pp. 45–66. [Google Scholar]
- Lillios, K.T. The emergence of ranked societies: The Late Copper Age to Early Bronze Age (2500–1500 BCE). In The Archaeology of the Iberian Peninsula: From the Paleolithic to the Bronze Age; Lillios, K.T., Ed.; Cambridge World Archaeology Series; Cambridge University Press: Cambridge, UK, 2020; pp. 227–292. [Google Scholar]
- Garrido-Pena, R.; Flores Fernández, R.; Herrero-Corral, A.M.; Muñoz Moro, P.; Gutierrez Saez, C.; Paulos-Bravo, R. Atlantic Halberds as bell beaker weapons in Iberia: Tomb 1 of Humanejos (Parla, Madrid, Spain). Oxf. J. Archaeol. 2022, 41, 252–277. [Google Scholar] [CrossRef]
- Margaryan, K.; Töpfer, R.; Gasparyan, B.; Arakelyan, A.; Trapp, O.; Röckel, F.; Maul, E. Wild grapes of Armenia: Unexplored source of genetic diversity and disease resistance. Front. Plant Sci. 2023, 14, 1276764. [Google Scholar] [CrossRef]
- Guerra-Doce, E.; Delibes de Castro, G. La cerámica campaniforme Ciempozuelos, una vajilla al servicio de una liturgia. In ¡Un Brindis por el Príncipe! El Vaso Campaniforme en el Interior de la Península Ibérica (2500–2000 a. C.); Delibes, G., Guerra, E., Eds.; Museo Arqueológico Regional: Madrid, Spain, 2019; Volume 2, pp. 223–241. [Google Scholar]
- Ocete, C.A.; Ocete, R.F.; Ocete, R.; Lara, M.; Renobales, G.; Valle, J.M.; Rodríguez-Miranda, Á.; Morales, R. Traditional medicinal uses of the Eurasian wild grapevine in the Iberian Peninsula. Anales Jard. Bot. Madrid 2020, 77, e102. [Google Scholar] [CrossRef]
- Lillios, K.T. The Archaeology of the Iberian Peninsula: From the Paleolithic to the Bronze Age; Cambridge World Archaeology Series; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Cavalieri, D.; McGovern, P.E.; Hartl, D.L.; Mortimer, R.; Polsinelli, M. Evidence for S. cerevisiae fermentation in ancient wine. J. Mol. Evol. 2003, 57, S226–S232. [Google Scholar] [CrossRef]
- Barata, A.; Santos, S.C.; Malfeito-Ferreira, M.; Loureiro, V. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Microb. Ecol. 2012, 64, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Eiras-Dias, J.E. Portuguese Vitis vinifera L. germplasm: Accessing its diversity and strategies for conservation. In The Mediterranean Genetic Code—Grapevine and Olive; Poljuha, D., Sladonja, B., Eds.; InTech: Rijeka, Croatia, 2013; pp. 125–145. [Google Scholar]
- De Andrés, M.T.; Benito, A.; Pérez-Rivera, G.; Ocete, R.; Lopez, M.A.; Gaforio, L.; Muñoz, G.; Cabello, F.; Martínez Zapater, J.M.; Arroyo-García, R. Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol. Ecol. 2012, 21, 800–816. [Google Scholar] [CrossRef] [PubMed]
- Benito, A.; Muñoz-Organero, G.; De Andrés, M.T.; Ocete, R.; García-Muñoz, S.; López, M.Á.; Arroyo-García, R.; Cabello, F. Ex situ ampelographical characterisation of wild Vitis vinifera from fifty-one Spanish populations. Aust. J. Grape Wine Res. 2017, 23, 143–152. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Valle, J.M.; Ocete, R.; López, M.Á.; Ocete, C.A.; Rodríguez-Miranda, Á.; Martínez-Zapater, J.M.; Ibáñez, J. Current situation and characterization of the Eurasian wild grapevine in Asturias region (Northwest of the Iberian Peninsula). VITIS-J. Grapevine Res. 2023, 62, 27–40. [Google Scholar] [CrossRef]
- Gil i Cortiella, M.; Úbeda, C.; Covarrubias, J.I.; Peña-Neira, Á. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Di Renzo, M.; Letizia, F.; Di Martino, C.; Karaulli, J.; Kongoli, R.; Testa, B.; Avino, P.; Guerriero, E.; Albanese, G.; Monaco, M.; et al. Natural Fiano wines fermented in stainless steel tanks, oak barrels, and earthenware amphora. Processes 2023, 11, 1273. [Google Scholar] [CrossRef]
- Egaña-Juricic, M.E.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Vinificación y guarda de vinos Carignan en tinajas de arcilla de Pañul: Estudio de la composición volátil de los vinos. RIVAR 2023, 10, 55–69. [Google Scholar] [CrossRef]
- Cunha, J.; Ibáñez, J.; Teixeira-Santos, M.; Brazão, J.; Fevereiro, P.; Martínez-Zapater, J.M.; Eiras-Dias, J.E. Genetic relationships among Portuguese cultivated and wild Vitis vinifera L. germplasm. Front. Plant Sci. 2020, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Thurmond, D.L. From Vines to Wines in Classical Rome: A Handbook of Viticulture and Oenology in Rome and the Roman West; Brill: Leiden, The Netherlands, 2017. [Google Scholar]
- Woolf, S.J.; Opaz, R. Foot Trodden: Portugal and The Wines That Time Forgot; Interlink Publishing Group, Inc.: Northampton, MA, USA, 2021. [Google Scholar]
- Harutyunyan, M.; Malfeito-Ferreira, M. Historical and heritage sustainability for the revival of ancient wine-making techniques and wine styles. Beverages 2022, 8, 10. [Google Scholar] [CrossRef]
- White, P. Talha Tales: Portugal’s Ancient Answer to Amphora Wines; White Ridgeway: London, UK, 2022. [Google Scholar]
- EC (European Community). Commission Regulation (EEC) No. 2676/90 of 17 September 1990 determining Community methods for the analysis of wines. Off. J. Eur. Union L 1990, 272, 1–192. [Google Scholar]
- OIV (International Organisation of Vine and Wine). Compendium of International Methods of Wine and Must Analysis, Sulfur dioxide—Method OIV-MA-AS323-04B: R2009, Type IV Method; Organisation Internationale de la Vigne et du Vin: Paris, France; Volume 1, Available online: https://www.oiv.int/public/medias/2582/oiv-ma-as323-04b.pdf (accessed on 10 October 2023).
- Vaquero, C.; Loira, I.; Raso, J.; Álvarez, I.; Delso, C.; Morata, A. Pulsed electric fields to improve the use of non-Saccharomyces starters in red wines. Foods 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- OIV (International Organisation of Vine and Wine). Compendium of International Methods of Wine and Must Analysis, Chromatic Characteristics—Method OIV-MA-AS2-07B: R2009, Type IV Method; Organisation Internationale de la Vigne et du Vin: Paris, France; Volume 1, Available online: https://www.oiv.int/public/medias/2475/oiv-ma-as2-07b.pdf (accessed on 15 July 2024).
- OIV (International Organisation of Vine and Wine). Compendium of International Methods of Wine and Must Analysis, Determination of Chromatic Characteristics According to CIELab—Method OIV-MA-AS2-11: R2006, Type I Method; Organisation Internationale de la Vigne et du Vin: Paris, France; Volume 1, Available online: https://www.oiv.int/public/medias/2478/oiv-ma-as2-11.pdf (accessed on 10 October 2023).
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. (Eds.) Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments, 3rd ed.; John Wiley and Sons Ltd.: Chichester, UK, 2021. [Google Scholar]
- Somers, T.C.; Evans, M.E. Spectral evaluation of young red wines: Anthocyanin equilibria, total phenolics, free and molecular SO2, “chemical age”. J. Sci. Food Agric. 1977, 28, 279–287. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 1999, 49, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.; Mota, M.; Silva, A.C.; Malfeito-Ferreira, M. Forest oak woodlands and fruit tree soils are reservoirs of wine-related yeast species. Am. J. Enol. Vitic. 2020, 71, 191–197. [Google Scholar] [CrossRef]
- Couto, M.B.; Reizinho, R.G.; Duarte, F.L. Partial 26S rDNA restriction analysis as a tool to characterise non-Saccharomyces yeasts present during red wine fermentations. Int. J. Food Microbiol. 2005, 102, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 March 2023).
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Kloke, J.; McKean, J.W. Nonparametric Statistical Methods Using R; The R Series; Taylor and Francis Group: New York, NY, USA, 2015. [Google Scholar]
- Conover, W.J.; Iman, R.L. Multiple-Comparisons Procedures. Informal Report; No. LA-7677-MS; Los Alamos Scientific Laboratory: Los Alamos, NM, USA, 1979. [Google Scholar]
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R Package Version 1.9.6/2022. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 10 February 2023).
- Graves, S.; Piepho, H.-P.; Selzer, L.; Dorai-Raj, S. MultcompView: Visualizations of Paired Comparisons. R Package Version 0.1-8/2019. Available online: https://CRAN.R-project.org/package=multcompView (accessed on 10 February 2023).
- Harutyunyan, M.; Viana, R.; Granja-Soares, J.; Asryan, A.; Marques, J.C.; Malfeito-Ferreira, M. Consumer acceptance of sweet wines and piquettes obtained by the adaptation of Ancient Wine-making Techniques. J. Sens. Stud. 2023, 38, e12823. [Google Scholar] [CrossRef]
- Vu, V.Q. ggbiplot: A ggplot2 Based Biplot. R Package Version 0.55/2011. Available online: http://github.com/vqv/ggbiplot (accessed on 15 March 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ares, G. Cluster analysis: Application in food science and technology. In Mathematical and Statistical Methods in Food Science and Technology; Granato, D., Ares, G., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 103–120. [Google Scholar]
- Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef]
- Maghradze, D.; Melyan, G.; Salimov, V.; Chipashvili, R.; Íñiguez, M.; Puras, P.; Melendez, E.; Vaca, R.; Ocete, C.; Rivera, D.; et al. Wild grapevine (Vitis sylvestris C.C.Gmel.) wines from the Southern Caucasus region. OENO One 2020, 54, 849–862. [Google Scholar] [CrossRef]
- Maghradze, D.; Kikilashvili, S.; Gotsiridze, O.; Maghradze, T.; Fracassetti, D.; Failla, O.; Rustioni, L. Comparison between the grape technological characteristics of Vitis vinifera subsp. sylvestris and subsp. sativa. Agronomy 2021, 11, 472. [Google Scholar] [CrossRef]
- Shimizu, H.; Kamada, A.; Koyama, K.; Iwashita, K.; Goto-Yamamoto, N. Yeast diversity during the spontaneous fermentation of wine with only the microbiota on grapes cultivated in Japan. J. Biosci. Bioeng. 2023, 136, 35–43. [Google Scholar] [CrossRef]
- Harutyunyan, M.; Viana, R.; Granja-Soares, J.; Martins, M.; Ribeiro, H.; Malfeito-Ferreira, M. Adaptation of ancient techniques to recreate ‘wines’ and ‘beverages’ using withered grapes of Muscat of Alexandria. Fermentation 2022, 8, 85. [Google Scholar] [CrossRef]
- Hranilovic, A.; Gambetta, J.M.; Jeffery, D.W.; Grbin, P.R.; Jiranek, V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int. J. Food Microbiol. 2020, 329, 108651. [Google Scholar] [CrossRef] [PubMed]
- Guindal, A.M.; Gonzalez, R.; Tronchoni, J.; Roodink, J.S.; Morales, P. Directed evolution of Saccharomyces cerevisiae for low volatile acidity during winemaking under aerobic conditions. Food Microbiol. 2023, 114, 104282. [Google Scholar] [CrossRef] [PubMed]
- Ocete, R.; Arroyo-Garcia, R.; Morales, M.L.; Cantos, M.; Gallardo, A.; Pérez, M.A.; Gómez, I.; López, M.A. Characterization of Vitis vinifera L. subspecies sylvestris (Gmelin) Hegi in the Ebro river Basin (Spain). Vitis 2011, 50, 11–16. [Google Scholar] [CrossRef]
- Drori, E.; Rahimi, O.; Marrano, A.; Henig, Y.; Brauner, H.; Salmon-Divon, M.; Netzer, Y.; Prazzoli, M.L.; Stanevsky, M.; Failla, O.; et al. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices. Sci. Rep. 2017, 7, 44463. [Google Scholar] [CrossRef]
- Goulioti, E.; Jeffery, D.W.; Kanapitsas, A.; Lola, D.; Papadopoulos, G.; Bauer, A.; Kotseridis, Y. Chemical and sensory characterization of Xinomavro red wine using grapes from protected designations of northern Greece. Molecules 2023, 28, 5016. [Google Scholar] [CrossRef]
- Pastorkova, E.; Zakova, T.; Landa, P.; Novakova, J.; Vadlejch, J.; Kokoska, L. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria. Int. J. Food Microbiol. 2013, 161, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Cuijvers, K.; Van Den Heuvel, S.; Varela, C.; Rullo, M.; Solomon, M.; Schmidt, S.; Borneman, A. Alterations in yeast species composition of uninoculated wine ferments by the addition of sulphur dioxide. Fermentation 2020, 6, 62. [Google Scholar] [CrossRef]
- Zhang, A.; Zeng, L.; Bo, H.; Hardie, W.J. Sulphite-corrected, non-phenolic and phenolic antioxidant capacities of fruit wines profiled by differential Folin-Ciocalteu assay. Int. J. Food Sci. Technol. 2022, 57, 1259–1272. [Google Scholar] [CrossRef]
- Barbosa, C.; Lage, P.; Vilela, A.; Mendes-Faia, A.; Mendes-Ferreira, A. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Expr. 2014, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, S.; Parpinello, G.P.; Segade, S.R.; Ricci, A.; Paissoni, M.A.; Curioni, A.; Marangon, M.; Mattivi, F.; Arapitsas, P.; Moio, L.; et al. Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Res. Int. 2021, 143, 110277. [Google Scholar] [CrossRef]
- Pfahl, L.; Catarino, S.; Fontes, N.; Graça, A.; Ricardo-da-Silva, J. Effect of barrel-to-barrel variation on color and phenolic composition of a red wine. Foods 2021, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.B.; Faria, D.L.; Duarte, D.F.; Egipto, R.; Laureano, O.; de Castro, R.; Pereira, G.E.; Ricardo-da-Silva, J.M. Effect of the harvest season on phenolic composition and oenological parameters of grapes and wines cv. ‘Touriga Nacional’ (Vitis vinifera L.) produced under tropical semi-arid climate, in the state of Pernambuco, Brazil. Ciência Téc. Vitiv. 2018, 33, 145–166. [Google Scholar] [CrossRef]
- Quaglieri, C.; Prieto-Perea, N.; Berrueta, L.A.; Gallo, B.; Rasines-Perea, Z.; Jourdes, M.; Teissedre, P.-L. Comparison of Aquitaine and Rioja red wines: Characterization of their phenolic composition and evolution from 2000 to 2013. Molecules 2017, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- Sen, I.; Tokatli, F. Authenticity of wines made with economically important grape varieties grown in Anatolia by their phenolic profiles. Food Control 2014, 46, 446–454. [Google Scholar] [CrossRef]
- Basalekou, M.; Strataridaki, A.; Pappas, C.; Tarantilis, P.A.; Kotseridis, Y.; Kallithraka, S. Authenticity determination of Greek-Cretan mono-varietal white and red wines based on their phenolic content using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics. Curr. Res. Nutr. Food Sci. 2016, 4, 54–62. [Google Scholar] [CrossRef]
- Stój, A.; Czernecki, T.; Domagała, D.; Targoński, Z. Comparative characterization of volatile profiles of French, Italian, Spanish, and Polish red wines using headspace solid-phase microextraction/gas chromatography-mass spectrometry. Int. J. Food Prop. 2017, 20, S830–S845. [Google Scholar] [CrossRef]
- Martins, N.; Garcia, R.; Mendes, D.; Freitas, A.M.C.; da Silva, M.G.; Cabrita, M.J. An ancient winemaking technology: Exploring the volatile composition of amphora wines. LWT-Food Sci. Technol. 2018, 96, 288–295. [Google Scholar] [CrossRef]
- Vaquero, C.; Loira, I.; Heras, J.M.; Carrau, F.; González, C.; Morata, A. Biocompatibility in ternary fermentations with Lachancea thermotolerans, other non-Saccharomyces and Saccharomyces cerevisiae to control pH and improve the sensory profile of wines from warm areas. Front. Microbiol. 2021, 12, 656262. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Du, J. A comparative study of the effect of bacteria and yeasts communities on inoculated and spontaneously fermented apple cider. Food Microbiol. 2023, 111, 104195. [Google Scholar] [CrossRef] [PubMed]
- Stój, A.; Czernecki, T.; Sosnowska, B.; Niemczynowicz, A.; Matwijczuk, A. Impact of grape variety, yeast and malolactic fermentation on volatile compounds and Fourier transform infrared spectra in red wines. Pol. J. Food Nutr. Sci. 2022, 72, 39–55. [Google Scholar] [CrossRef]
Prime Name and Variety Number a | Sample Code b | Red and Teinturier Grapes |
---|---|---|
V. sylvestris | SB, SE | Wild red grape |
Vinhão, c #13100 | VB, VE | Teinturier variety |
Marufo, #8086 | MB, ME | Dioecious red variety with female flowers |
Melhorio, #17255 | MB, ME | Low-colored red variety |
Branjo, #17661 | BB, BE | Red variety |
Castelão, #2324 | CB, CE, WCB, WCE, WCES | Common Portuguese red variety |
Tempranillo Tinto, d #12350 | AB, AE, ACB, WAB, WAE, WAES | Common Iberian red variety |
Grapes | Berry Weight (g/Berry) | Juice Yield (% v/w) | °Brix | pH | Total Acidity (G/L Tartaric Acid) | Anthocyanins (mg/L) | Total Phenol Index |
---|---|---|---|---|---|---|---|
2020 | |||||||
V. sylvestris | 1.36 | 48 | 25.3 | 2.84 | 13.10 | 1575.4 | 92.04 |
Vinhão | 1.79 | 62 | 24.2 | 3.34 | 7.80 | 2290.8 | 91.92 |
Marufo | 2.63 | 64 | 23.3 ± 2.0 a | 4.07 ± 0.00 | 1.95 ± 0.00 | 116.2 ± 44.6 | 24.06 ± 3.66 |
Castelão | 2.88 | 71 | 18.2 ± 1.0 | 3.95 ± 0.14 | 3.23 ± 0.53 | 202.0 ± 35.3 | 19.25 ± 5.29 |
2021 | |||||||
V. sylvestris | 0.73 | 43 | 22.8 ± 0.3 | 2.91 ± 0.04 | 15.90 ± 0.8 | 2296.5 ± 303.0 | 143.0 ± 10.6 |
Vinhão | 2.08 | 67 | 24.0 ± 0.4 | 3.26 ± 0.06 | 8.85 ± 0.85 | 2678.3 ± 219.5 | 121.4 ± 2.0 |
Branjo | 2.73 | 65 | 21.7 ± 0.2 | 3.48 ± 0.04 | 6.55 ± 0.21 | 1447.9 ± 9.0 | 65.7 ± 1.4 |
Melhorio | 1.80 | 67 | 18.9 ± 0.1 | 2.88 ± 0.03 | 14.90 ± 0.4 | 249.6 ± 28.8 | 16.2 ± 2.7 |
Tempranillo Tinto | 2.30 | 69 | 22.0 ± 0.3 | 3.42 ± 0.01 | 6.35 ± 0.07 | 667.1 ± 192.3 | 25.0 ± 7.4 |
Grape Variety | Volatile Acidity (g/L Acetic Acid) | Ethanol at 20 °C (% v/v) | ||
---|---|---|---|---|
Beaker | Erlenmeyer Flask | Beaker | Erlenmeyer Flask | |
2020 | ||||
V. sylvestris | 0.51 ± 0.01 | 0.55 ± 0.02 | 8.50 ± 0.00 | 12.35 ± 0.07 |
Vinhão | 2.68 ± 0.11 | 1.71 ± 0.01 | 10.80 ± 0.00 | 12.60 ± 0.00 |
Marufo | 2.59 ± 0.06 | 0.99 ± 0.01 | 11.50 ± 0.00 | 14.30 ± 0.00 |
Castelão | 6.40 ± 0.28 | 0.64 ± 0.06 | 10.75 ± 0.21 | 12.10 ± 0.00 |
Castelão a | 8.89 ± 0.64 | 3.74 ± 0.17 | 12.30 ± 0.14 | 12.60 ± 0.00 |
Castelão b | – | 3.05 ± 0.16 | – | 12.20 ± 0.00 |
2021 | ||||
V. sylvestris | 4.79 ± 1.23 | 0.92 ± 0.04 | 8.60 ± 0.00 | 12.10 ± 0.00 |
Vinhão | 4.16 ± 0.04 | 4.33 ± 0.57 | 10.2 ± 0.00 | 12.20 ± 0.00 |
Melhorio | 3.91 ± 0.02 | 1.88 ± 0.08 | 8.40 ± 0.00 | 9.80 ± 0.00 |
Branjo | 4.87 ± 1.12 | 0.55 ± 0.06 | 8.40 ± 0.00 | 11.70 ± 0.00 |
Tempranillo Tinto | 6.16 ± 0.15 | 1.74 ± 0.08 | 10.00 ± 0.00 | 11.20 ± 0.00 |
Tempranillo Tinto a | 21.13 ± 6.26 | 8.11 ± 0.87 | 2.30 ± 0.00 | 6.50 ± 0.00 |
Tempranillo Tinto b | – | 0.41 ± 0.08 | – | 11.50 ± 0.00 |
Tempranillo Tinto c | 13.12 ± 0.66 | – | 6.90 ± 0.00 | – |
Volatile Acidity (g/L Acetic Acid) | Ethanol at 20 °C (% v/v) | pH | Total Acidity (g/L Tartaric Acid) | Free SO2 (mg/L) | Total SO2 (mg/L) | C * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vintage | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Volatile acidity (g/L acetic acid) | – | – | ||||||||||||
Ethanol at 20 °C (% v/v) | 0.01 | −0.75 ** | – | – | ||||||||||
pH | 0.16 | −0.25 | 0.30 | 0.57 * | – | – | ||||||||
Total acidity (g/L tartaric acid) | 0.46 | 0.79 ** | −0.48 | −0.89 **** | −0.68 * | −0.75 ** | – | – | ||||||
Free SO2 (mg/L) | −0.60 | −0.65 * | −0.10 | 0.53 | −0.43 | 0.18 | −0.07 | −0.52 | – | – | ||||
Total SO2 (mg/L) | −0.78 ** | −0.58 * | −0.32 | 0.68 * | −0.53 | 0.41 | −0.02 | −0.64 * | 0.82 ** | 0.92 **** | – | – | ||
C * | −0.64 * | −0.36 | −0.45 | 0.65 * | −0.59 | 0.47 | 0.20 | −0.52 | 0.80 ** | 0.73 ** | 0.94 **** | 0.89 **** | – | – |
H * | 0.36 | 0.03 | 0.44 | 0.20 | −0.19 | 0.17 | 0.00 | −0.11 | 0.07 | 0.34 | −0.27 | 0.53 | −0.35 | 0.61 * |
Intensity (I) | Shade (N) | Total Phenol Index | Anthocyanins | Total Anthocyanins | Degree of Ionization of Anthocyanins | Ionized Anthocyanins | Total Pigments | Polymerization Index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vintage | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Intensity (I) | – | – | ||||||||||||||||
Shade (N) | −0.92 **** | −0.75 ** | – | – | ||||||||||||||
Total phenol index | 0.88 *** | 0.85 **** | −0.78 ** | −0.48 | – | – | ||||||||||||
Anthocyanins | 0.81 ** | 0.92 **** | −0.82 ** | −0.80 *** | 0.60 | 0.78 *** | – | – | ||||||||||
Total anthocyanins | 0.95 **** | 0.91 **** | −0.92 **** | −0.82 *** | 0.83 ** | 0.72 ** | 0.79 ** | 0.98 **** | – | – | ||||||||
Degree of ionization of anthocyanins | 0.60 | 0.60 * | −0.52 | −0.41 | 0.65 * | 0.73 ** | 0.36 | 0.41 | 0.37 | 0.31 | – | – | ||||||
Ionized anthocyanins | 0.98 **** | 0.99 **** | −0.94 **** | −0.78 *** | 0.88 *** | 0.85 *** | 0.77 ** | 0.92 **** | 0.93 **** | 0.90 **** | 0.62 * | 0.63 * | – | – | ||||
Total pigments | 0.97 **** | 0.93 **** | −0.95 **** | −0.78 *** | 0.87 *** | 0.79 *** | 0.82 ** | 0.99 **** | 0.95 **** | 0.99 **** | 0.51 | 0.40 | 0.95 **** | 0.92 **** | – | – | ||
Polymerization index | −0.12 | 0.52 | 0.15 | −0.09 | 0.00 | 0.77 ** | −0.16 | 0.27 | −0.32 | 0.19 | 0.65 * | 0.87 **** | −0.12 | 0.52 | −0.16 | 0.28 | – | – |
Polymerized pigments | 0.99 **** | 0.93 **** | −0.91 *** | −0.54 * | 0.87 *** | 0.96 **** | 0.80 ** | 0.80 *** | 0.94 **** | 0.77 ** | 0.57 | 0.75 ** | 0.97 **** | 0.91 **** | 0.98 **** | 0.82 *** | −0.11 | 0.75 ** |
Acetaldehyde | Methanol | 1-Propanol | Diacetyl | Ethyl acetate | Isobutanol | Acetoin | 2-Methyl-1-butanol | 3-Methyl-1-butanol | Isobutyl acetate | Ethyl lactate | 2,3-Butanediol | Isoamyl acetate | Hexanol | 2-Phenylethanol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | – | ||||||||||||||
Methanol | 0.39 | – | |||||||||||||
1-Propanol | 0.20 | 0.54 | – | ||||||||||||
Diacetyl | −0.28 | 0.09 | 0.34 | – | |||||||||||
Ethyl acetate | −0.22 | −0.81 ** | −0.45 | 0.00 | – | ||||||||||
Isobutanol | −0.16 | 0.14 | 0.28 | 0.44 | 0.17 | – | |||||||||
Acetoin | 0.20 | 0.42 | 0.42 | −0.32 | −0.49 | 0.25 | – | ||||||||
2-Methyl-1-butanol | 0.28 | 0.91 *** | 0.54 | 0.16 | −0.73 * | 0.32 | 0.64 * | – | |||||||
3-Methyl-1-butanol | 0.37 | 0.86 *** | 0.28 | 0.20 | −0.55 | 0.44 | 0.24 | 0.79 ** | – | ||||||
Isobutyl acetate | 0.50 | 0.08 | −0.29 | −0.17 | 0.00 | −0.26 | −0.19 | −0.03 | 0.16 | – | |||||
Ethyl lactate | 0.43 | 0.30 | 0.61 * | −0.23 | −0.29 | 0.21 | 0.78 ** | 0.41 | 0.09 | −0.25 | – | ||||
2,3-Butanediol | 0.25 | 0.80 ** | 0.40 | 0.08 | −0.52 | −0.06 | 0.11 | 0.65 * | 0.60 | −0.09 | 0.21 | – | |||
Isoamyl acetate | −0.33 | −0.37 | −0.56 | 0.05 | 0.07 | −0.54 | −0.67 * | −0.56 | −0.34 | 0.30 | −0.75 ** | −0.28 | – | ||
Hexanol | 0.13 | 0.27 | 0.16 | −0.11 | 0.11 | −0.06 | −0.11 | 0.13 | 0.13 | −0.03 | 0.19 | 0.72 * | −0.24 | – | |
2-Phenylethanol | 0.33 | 0.92 **** | 0.39 | 0.03 | −0.66 * | 0.07 | 0.38 | 0.87 *** | 0.77 ** | −0.08 | 0.29 | 0.91 *** | −0.45 | 0.46 | – |
2-Phenylethyl acetate | 0.05 | −0.11 | −0.69 * | 0.19 | 0.16 | −0.15 | −0.50 | −0.11 | 0.17 | 0.49 | −0.72 * | −0.14 | 0.46 | −0.27 | −0.05 |
Acetaldehyde | Methanol | 1-Propanol | Diacetyl | Ethyl acetate | Isobutanol | Acetoin | 2-Methyl-1-butanol | 3-Methyl-1-butanol | Isobutyl acetate | Ethyl lactate | 2,3-Butanediol | Isoamyl acetate | Hexanol | 2-Phenylethanol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | – | ||||||||||||||
Methanol | −0.63 * | – | |||||||||||||
1-Propanol | −0.23 | 0.56 * | – | ||||||||||||
Diacetyl | 0.14 | 0.25 | 0.54 * | – | |||||||||||
Ethyl acetate | −0.07 | −0.16 | −0.47 | −0.33 | – | ||||||||||
Isobutanol | 0.28 | 0.05 | 0.48 | 0.31 | −0.50 | – | |||||||||
Acetoin | −0.45 | 0.24 | −0.22 | −0.43 | 0.38 | −0.43 | – | ||||||||
2-Methyl-1-butanol | −0.23 | 0.34 | 0.51 | 0.18 | −0.53 | 0.67 ** | −0.05 | – | |||||||
3-Methyl-1-butanol | −0.02 | 0.33 | 0.58 * | 0.39 | −0.78 *** | 0.78 ** | −0.42 | 0.82 *** | – | ||||||
Isobutyl acetate | 0.31 | −0.22 | 0.15 | −0.02 | 0.26 | −0.06 | 0.02 | −0.46 | −0.33 | – | |||||
Ethyl lactate | −0.17 | 0.57 * | 0.09 | 0.23 | −0.18 | −0.18 | 0.00 | 0.08 | 0.17 | −0.34 | – | ||||
2,3-Butanediol | −0.42 | 0.58 * | 0.05 | 0.09 | 0.36 | −0.51 | 0.21 | −0.08 | −0.22 | −0.13 | 0.70 ** | – | |||
Isoamyl acetate | 0.34 | −0.32 | −0.50 | −0.35 | 0.47 | 0.14 | 0.26 | −0.08 | −0.16 | 0.19 | −0.19 | −0.19 | – | ||
Hexanol | −0.48 | 0.45 | 0.19 | −0.09 | 0.34 | 0.03 | 0.48 | 0.15 | −0.20 | 0.11 | 0.14 | 0.37 | 0.02 | – | |
2-Phenylethanol | 0.10 | 0.14 | −0.12 | −0.04 | −0.30 | 0.16 | 0.10 | 0.48 | 0.33 | −0.42 | 0.48 | 0.19 | 0.26 | −0.02 | – |
2-Phenylethyl acetate | −0.12 | −0.06 | −0.20 | 0.00 | 0.62 * | −0.35 | 0.55 * | −0.11 | −0.48 | −0.14 | −0.11 | 0.20 | 0.32 | 0.17 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malfeito-Ferreira, M.; Granja-Soares, J.; Chandra, M.; Asryan, A.; Oliveira, J.; Freitas, V.; Loira, I.; Morata, A.; Cunha, J.; Harutyunyan, M. Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking. Fermentation 2024, 10, 401. https://doi.org/10.3390/fermentation10080401
Malfeito-Ferreira M, Granja-Soares J, Chandra M, Asryan A, Oliveira J, Freitas V, Loira I, Morata A, Cunha J, Harutyunyan M. Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking. Fermentation. 2024; 10(8):401. https://doi.org/10.3390/fermentation10080401
Chicago/Turabian StyleMalfeito-Ferreira, Manuel, Joana Granja-Soares, Mahesh Chandra, Arman Asryan, Joana Oliveira, Victor Freitas, Iris Loira, Antonio Morata, Jorge Cunha, and Mkrtich Harutyunyan. 2024. "Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking" Fermentation 10, no. 8: 401. https://doi.org/10.3390/fermentation10080401
APA StyleMalfeito-Ferreira, M., Granja-Soares, J., Chandra, M., Asryan, A., Oliveira, J., Freitas, V., Loira, I., Morata, A., Cunha, J., & Harutyunyan, M. (2024). Investigating the Influence of Vessel Shape on Spontaneous Fermentation in Winemaking. Fermentation, 10(8), 401. https://doi.org/10.3390/fermentation10080401