Particle Size Effect on Anaerobic Digestion of Fruit and Vegetable Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Batch Assays of Anaerobic Digestion of Fruit and Vegetable Waste
2.2. Model Description
2.2.1. Hydrolysis
2.2.2. Acidogenesis and Methanogenesis
2.2.3. Parameter Estimation
2.2.4. Sensitivity Analysis
2.2.5. Model Validation and Simulation in Continuous Regime
3. Results and Discussion
3.1. Fruit and Vegetable Waste Characterization and Methane Production
3.2. Parameter Estimation and Validation
3.3. Sensitivity Analysis
3.4. Effect of Particle Size and Substrate Concentration
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Policastro, G.; Fabbricino, M. Anaerobic Digestion of Food Waste: New Research, Challenges and Opportunities. Fermentation 2023, 9, 473. [Google Scholar] [CrossRef]
- Czekała, W.; Nowak, M.; Bojarski, W. Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation 2023, 9, 449. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sharma, G.D.; Cysneiros, D.; Nayak, S.C.; Thakur, V.K.; Naidu, R.; Pandey, A.; Gupta, V.K. Minimizing Hazardous Impact of Food Waste in a Circular Economy—Advances in Resource Recovery through Green Strategies. J. Hazard. Mater. 2021, 416, 126154. [Google Scholar] [CrossRef]
- Azevedo, A.; Lapa, N.; Moldão, M.; Duarte, E. Opportunities and Challenges in the Anaerobic Co-Digestion of Municipal Sewage Sludge and Fruit and Vegetable Wastes: A Review. Energy Nexus 2023, 10, 100202. [Google Scholar] [CrossRef]
- Gladchenko, M.A.; Kovalev, D.A.; Kovalev, A.A.; Litti, Y.V.; Nozhevnikova, A.N. Methane Production by Anaerobic Digestion of Organic Waste from Vegetable Processing Facilities. Appl. Biochem. Microbiol. 2017, 53, 242–249. [Google Scholar] [CrossRef]
- Mata-Alvarez, J. Biomethanization of Organic Fraction of Municipal Solid Wastes; IWA Publishing: Cornwall, UK, 2002. [Google Scholar]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic Digestion of Food Waste—Challenges and Opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Liu, K.; Lv, L.; Li, W.; Ren, Z.; Wang, P.; Liu, X.; Gao, W.; Sun, L.; Zhang, G. A Comprehensive Review on Food Waste Anaerobic Co-Digestion: Research Progress and Tendencies. Sci. Total Environ. 2023, 878, 163155. [Google Scholar] [CrossRef]
- Terashima, M.; Goel, R.; Komatsu, K.; Yasui, H.; Takahashi, H.; Li, Y.Y.; Noike, T. CFD Simulation of Mixing in Anaerobic Digesters. Bioresour. Technol. 2009, 100, 2228–2233. [Google Scholar] [CrossRef]
- Zhang, Y.; Banks, C.J. Impact of Different Particle Size Distributions on Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste. Waste Manag. 2013, 33, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Sanders, W.T.M.; Geerink, M.; Zeeman, G.; Lettinga, G. Anaerobic Hydrolysis Kinetics of Particulate Substrates. Water Sci. Technol. 2000, 41, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.; Ahmed, S.; Kumar, A. Anaerobic Digestion (AD) of Fruit and Vegetable Market Waste (FVMW): Potential of FVMW, Bioreactor Performance, Co-Substrates, and Pre-Treatment Techniques. Biomass Convers. Biorefin. 2022, 12, 3573–3592. [Google Scholar] [CrossRef]
- Izumi, K.; Okishio, Y.K.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of Particle Size on Anaerobic Digestion of Food Waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- Edwiges, T.; Frare, L.M.; Lima Alino, J.H.; Triolo, J.M.; Flotats, X.; Silva de Mendonça Costa, M.S. Methane Potential of Fruit and Vegetable Waste: An Evaluation of the Semi-Continuous Anaerobic Mono-Digestion. Environ. Technol. 2020, 41, 921–930. [Google Scholar] [CrossRef]
- Ganesh, R.; Torrijos, M.; Sousbie, P.; Lugardon, A.; Steyer, J.P.; Delgenes, J.P. Single-Phase and Two-Phase Anaerobic Digestion of Fruit and Vegetable Waste: Comparison of Start-up, Reactor Stability and Process Performance. Waste Manag. 2014, 34, 875–885. [Google Scholar] [CrossRef]
- Magama, P.; Chiyanzu, I.; Mulopo, J. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresour. Technol. Rep. 2022, 18, 101031. [Google Scholar] [CrossRef]
- Kratky, L.; Jirout, T. Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 2011, 34, 391–399. [Google Scholar] [CrossRef]
- Ganeshan, P.; Rajendran, K. Dynamic Simulation and Optimization of Anaerobic Digestion Processes Using MATLAB. Bioresour. Technol. 2022, 351, 126970. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Mailier, J.; Martin, C.; Rodríguez, J.; Aceves-Lara, C.A.; Wouwer, A. Vande Model Selection, Identification and Validation in Anaerobic Digestion: A Review. Water Res. 2011, 45, 5347–5364. [Google Scholar] [CrossRef]
- Graef, S.P.; Andrews, J.F. Mathematical Modeling and Control of Anaerobic Digestion. Water Res. 1974, 8, 261–289. [Google Scholar]
- Hill, D.T.; Barth, C.L. A Dynamic Model for Simulation of Animal Waste Digestion. J. Water Pollut. Control Fed. 1977, 49, 2129–2143. [Google Scholar]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on Anaerobic Digestion Models: Model Classification & Elaboration of Process Phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Batstone, D.J.; Puyol, D.; Flores-Alsina, X.; Rodríguez, J. Mathematical Modelling of Anaerobic Digestion Processes: Applications and Future Needs. Rev. Environ. Sci. Biotechnol. 2015, 14, 595–613. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Wu, D.; Xiao, T.; Ma, Y.; Peng, X. Modified Anaerobic Digestion Model No. 1 for Modeling Methane Production from Food Waste in Batch and Semi-Continuous Anaerobic Digestions. Bioresour. Technol. 2019, 271, 109–117. [Google Scholar] [CrossRef]
- Weinrich, S.; Mauky, E.; Schmidt, T.; Krebs, C.; Liebetrau, J.; Nelles, M. Systematic Simplification of the Anaerobic Digestion Model No. 1 (ADM1)—Laboratory Experiments and Model Application. Bioresour. Technol. 2021, 333, 125104. [Google Scholar] [CrossRef]
- Weinrich, S.; Nelles, M. Systematic Simplification of the Anaerobic Digestion Model No. 1 (ADM1)—Model Development and Stoichiometric Analysis. Bioresour. Technol. 2021, 333, 125124. [Google Scholar] [CrossRef]
- Fernández, L.C. Manual de Técnicas de Análisis de Suelos Aplicadas a La Remediación de Sitios Contaminados; Instituto Mexicano del Petroleo, Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2006. [Google Scholar]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- NMX-AA-026-SCFI-2001; Water Analysis—Determination of Total Kjeldahl Nitrogen in Natural Water, Wastewaters and Treated Water—Test Method. Secretaria de Energía: Ciudad de México, Mexico, 2001.
- Rabii, A.; El Sayed, A.; Ismail, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. Optimizing the Mixing Ratios of Source-Separated Organic Waste and Thickened Waste Activated Sludge in Anaerobic Co-Digestion: A New Approach. Processes 2024, 12, 794. [Google Scholar] [CrossRef]
- Field, J.A. Limits of Anaerobic Biodegradation. Water Sci. Technol. 2002, 45, 9–18. [Google Scholar] [CrossRef]
- Esposito, G. Bio-Methane Potential Tests to Measure the Biogas Production from the Digestion and Co-Digestion of Complex Organic Substrates. Open Environ. Eng. J. 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Kiely, G.; Tayfur, G.; Dolan, C.; Tanji, K. Physical and Mathematical Modelling of Anaerobic Digestion of Organic Wastes. Water Res. 1997, 31, 534–540. [Google Scholar] [CrossRef]
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Andrews, J.F. Dynamic Model of the Anaerobic Digestion Process. J. Sanit. Eng. Div. 1969, 95, 95–116. [Google Scholar] [CrossRef]
- Moletta, R.; Verrier, D.; Albagnac, G. Dynamic Modelling of Anaerobic Digestion. Water Res. 1986, 20, 427–434. [Google Scholar] [CrossRef]
- Tartakovsky, B.; Mu, S.J.; Zeng, Y.; Lou, S.J.; Guiot, S.R.; Wu, P. Anaerobic Digestion Model No. 1-Based Distributed Parameter Model of an Anaerobic Reactor: II. Model Validation. Bioresour. Technol. 2008, 99, 3676–3684. [Google Scholar] [CrossRef]
- Mathur, R.; Sharma, M.K.; Loganathan, K.; Abbas, M.; Hussain, S.; Kataria, G.; Alqahtani, M.S.; Srinivas Rao, K. Modeling of Two-Stage Anaerobic Onsite Wastewater Sanitation System to Predict Effluent Soluble Chemical Oxygen Demand through Machine Learning. Sci. Rep. 2024, 14, 1835. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Edwiges, T.; Frare, L.; Mayer, B.; Lins, L.; Mi Triolo, J.; Flotats, X.; de Mendonça Costa, M.S.S. Influence of Chemical Composition on Biochemical Methane Potential of Fruit and Vegetable Waste. Waste Manag. 2018, 71, 618–625. [Google Scholar] [CrossRef]
- Ji, C.; Kong, C.X.; Mei, Z.L.; Li, J. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl. Biochem. Biotechnol. 2017, 183, 906–922. [Google Scholar] [CrossRef]
- Zeshan, K.; Karthikeyan, O.P.; Visvanathan, C. Effect of C/N Ratio and Ammonia-N Accumulation in a Pilot-Scale Thermophilic Dry Anaerobic Digester. Bioresour. Technol. 2012, 113, 294–302. [Google Scholar] [CrossRef]
- Vigueras-Carmona, S.E.; Ramírez, F.; Noyola, A.; Monroy, O. Effect of Thermal Alkaline Pretreatment on the Anaerobic Digestion of Wasted Activated Sludge. Water Sci. Technol. 2011, 64, 953–959. [Google Scholar] [CrossRef] [PubMed]
- De Pauw, D.J.W.; Vanrolleghem, P.A. Practical Aspects of Sensitivity Function Approximation for Dynamic Models. Math. Comput. Model. Dyn. Syst. 2006, 12, 395–414. [Google Scholar] [CrossRef]
- Martínez, E.J.; González, R.; Ellacuriaga, M.; Gómez, X. Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes. Fermentation 2022, 8, 744. [Google Scholar] [CrossRef]
- Liu, W.-Y.; Liao, B. Anaerobic Co-Digestion of Vegetable and Fruit Market Waste in LBR + CSTR Two-Stage Process for Waste Reduction and Biogas Production. Appl. Biochem. Biotechnol. 2019, 188, 185–193. [Google Scholar] [CrossRef]
- Morales-Polo, C.; del Mar Cledera-Castro, M.; Moratilla Soria, B.Y. Reviewing the Anaerobic Digestion of Food Waste: From Waste Generation and Anaerobic Process to Its Perspectives. Appl. Sci. 2018, 8, 1804. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Tao, W. Anaerobic Co-Digestion of Food Waste and Dairy Manure: Effects Offood Waste Particle Size and Organic Loading Rate. J. Environ. Manag. 2014, 133, 268–274. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Tyborowski, R. Methane Production Potential from Apple Pomace, Cabbage Leaves, Pumpkin Residue and Walnut Husks. Appl. Sci. 2022, 12, 6128. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Chaudhari, P.K.; Ghosh, P. Effect of Mixing Ratio on Biomethane Potential of Anaerobic Co-Digestion of Fruit and Vegetable Waste and Food Waste. Biomass Convers. Biorefin. 2023, 14, 16149–16158. [Google Scholar] [CrossRef]
Parameter | Value (Units) | Reference | Parameter | Value (Units) | Reference |
---|---|---|---|---|---|
1.5 | [39] | 0.2 | [23] | ||
0.26 | [39] | 2.45 | [23] | ||
0.138 | [39] | 0.06 | [23] | ||
0.003 | [39] | * | 18.26 | [23] | |
0.3 | [39] |
5.58 | 6 | 7 | 8 | 8.41 | |
---|---|---|---|---|---|
125.74 | |||||
250.00 | |||||
550.00 | * | ||||
850.00 | |||||
947.26 |
Parameter | Units | Value |
---|---|---|
pH | - | 5 |
Moisture | 91.5 | |
TS | 0.085 | |
VS | 0.074 | |
COD | 0.813 | |
Nitrogen | 0.019 | |
C/N | - | 14.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vian, J.; Velasco-Pérez, A.; Solar-González, R.; García-Herrera, T.; Puebla, H.; Vivar-Vera, G. Particle Size Effect on Anaerobic Digestion of Fruit and Vegetable Waste. Fermentation 2024, 10, 485. https://doi.org/10.3390/fermentation10090485
Vian J, Velasco-Pérez A, Solar-González R, García-Herrera T, Puebla H, Vivar-Vera G. Particle Size Effect on Anaerobic Digestion of Fruit and Vegetable Waste. Fermentation. 2024; 10(9):485. https://doi.org/10.3390/fermentation10090485
Chicago/Turabian StyleVian, José, Alejandra Velasco-Pérez, Rocío Solar-González, Tania García-Herrera, Hector Puebla, and Guadalupe Vivar-Vera. 2024. "Particle Size Effect on Anaerobic Digestion of Fruit and Vegetable Waste" Fermentation 10, no. 9: 485. https://doi.org/10.3390/fermentation10090485
APA StyleVian, J., Velasco-Pérez, A., Solar-González, R., García-Herrera, T., Puebla, H., & Vivar-Vera, G. (2024). Particle Size Effect on Anaerobic Digestion of Fruit and Vegetable Waste. Fermentation, 10(9), 485. https://doi.org/10.3390/fermentation10090485