A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of New LAB from Goat and Ewe’s Milk
2.1.1. Isolation of LAB
2.1.2. Molecular Identification Using Multiplex PCR Assays
2.2. Microbial Cultures and Culture Conditions
2.3. In Vitro Safety Assessment
2.3.1. Hemolytic Activity
2.3.2. Antibiotic Susceptibility
2.4. In Vitro Evaluation of Probiotic Properties
2.4.1. Cell Surface Hydrophobicity and Auto-Aggregation
2.4.2. Adhesion to Differentiated Caco-2 Cells
2.4.3. Bile Salt Hydrolase (BSH) Activity
2.4.4. In Vitro Cholesterol Assimilation
2.4.5. Antagonistic Activity of Isolates Against Foodborne Pathogens Using a Co-Culture Assay
2.4.6. Survival After In Vitro Digestion
2.5. In Vitro Evaluation of Technological Properties
2.5.1. pH Tolerance
2.5.2. NaCl Tolerance
2.6. Immobilization of Lc. paracasei FBM_1327 Cells on Oat Flakes Followed by Freeze-Drying
2.7. Production of Dairy Products with Lc. paracasei FBM_1327 as Adjunct Cultures
2.7.1. Yoghurt Production
2.7.2. Ayran Production
2.8. Analyses
2.8.1. Scanning Electron Microscopy
2.8.2. Physicochemical Analyses
Determination of pH
Titratable Acidity (TA)
Quantification of Residual Sugars and Organic Acids by HPLC
Minor Volatile Analysis by HS-SPME GC/MS
2.8.3. Microbiological Analyses
2.8.4. Sensory Evaluation
2.9. Statistical Analyses
3. Results and Discussion
3.1. Isolation and Molecular Identification of Isolated Strains
3.2. In Vitro Safety Assessment of Hemolysis and Antibiotic Susceptibility
3.3. In Vitro Evaluation of Functional Properties
3.3.1. Cell Surface Hydrophobicity and Auto-Aggregation
3.3.2. Adhesion to Differentiated Caco-2 Cells
3.3.3. Bile Salt Hydrolase (BSH) Activity
3.3.4. In Vitro Cholesterol Assimilation
3.3.5. Antagonistic Activity of Wild-Type Isolates Against Spoilage and Foodborne Pathogens
3.3.6. Survival After In Vitro Digestion
3.4. In Vitro Evaluation of Technological Properties
3.4.1. pH Tolerance
3.4.2. NaCl Tolerance
3.5. Cell Immobilization and Preparation of Functional Dairy Products
3.5.1. Preparation of Freeze-Dried Immobilized Cells of Lc. paracasei FBM_1327 on Oat Flakes
3.5.2. pH, TA, Sugar, and Organic Acid Content of Functional Yoghurt and Ayran Products
3.5.3. Minor Volatile Analysis in Functional Yoghurt and Ayran Products
3.5.4. Survival of Lc. paracasei FBM_1327 in Functional Yoghurt and Ayran Products
3.5.5. Effects of Lc. paracasei FBM_1327 on Sensory Properties of Functional Yoghurt and Ayran Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; WHO. Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations/World Health Organization: London, UK, 2002; Available online: https://isappscience.org/wp-content/uploads/2019/04/probiotic_guidelines.pdf (accessed on 2 October 2024).
- Probiotics Market Size, Share & Trends Analysis Report by Product, by Ingredient (Bacteria, Yeast), by Distribution Channel, by End Use (Human Probiotics, Animal Probiotics), by Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/probiotics-market (accessed on 4 October 2024).
- Mendonça, A.A.; Pinto-Neto, W.d.P.; da Paixão, G.A.; Santos, D.d.S.; De Morais, M.A., Jr.; De Souza, R.B. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of Obesity and Its Associated Diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, B.; Zhou, X.; Wang, Y.; Wang, H.; Jia, S.; Zhang, Z.; Chu, C.; Mu, J. Combined Lowering Effects of Rosuvastatin and L. acidophilus on Cholesterol Levels in Rat. J. Microbiol. Biotechnol. 2019, 29, 473–481. [Google Scholar] [CrossRef]
- Momin, E.S.; Khan, A.A.; Kashyap, T.; Pervaiz, M.A.; Akram, A.; Mannan, V.; Sanusi, M.; Elshaikh, A.O. The Effects of Probiotics on Cholesterol Levels in Patients with Metabolic Syndrome: A Systematic Review. Cureus 2023, 15, e37567. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Bharathi, M.; Kesika, P.; Suganthy, N.; Chaiyasut, C. The Administration of Probiotics against Hypercholesterolemia: A Systematic Review. Appl. Sci. 2021, 11, 6913. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Nedovic, V.; Goyal, A.; Kourkoutas, Y. Immobilization Technologies in Probiotic Food Production. J. Nutr. Metab. 2013, 2013, 716861. [Google Scholar] [CrossRef] [PubMed]
- Prapa, I.; Nikolaou, A.; Panas, P.; Tassou, C.; Kourkoutas, Y. Developing Stable Freeze-Dried Functional Ingredients Containing Wild-Type Presumptive Probiotic Strains for Food Systems. Appl. Sci. 2023, 13, 630. [Google Scholar] [CrossRef]
- Nelios, G.; Prapa, I.; Nikolaou, A.; Mitropoulou, G.; Yanni, A.E.; Kostomitsopoulos, N.; Kourkoutas, Y. Cereals and Fruits as Effective Delivery Vehicles of Lacticaseibacillus rhamnosus through Gastrointestinal Transit. Appl. Sci. 2023, 13, 8643. [Google Scholar] [CrossRef]
- Bosnea, L.A.; Kourkoutas, Y.; Albantaki, N.; Tzia, C.; Koutinas, A.A.; Kanellaki, M. Functionality of Freeze-Dried L. casei Cells Immobilized on Wheat Grains. Lebenson. Wiss. Technol. 2009, 42, 1696–1702. [Google Scholar] [CrossRef]
- Sidira, M.; Karapetsas, A.; Galanis, A.; Kanellaki, M.; Kourkoutas, Y. Effective Survival of Immobilized Lactobacillus casei during Ripening and Heat Treatment of Probiotic Dry-Fermented Sausages and Investigation of the Microbial Dynamics. Meat Sci. 2014, 96, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Sidira, M.; Kourkoutas, Y.; Kanellaki, M.; Charalampopoulos, D. In Vitro Study on the Cell Adhesion Ability of Immobilized Lactobacilli on Natural Supports. Food Res. Int. 2015, 76, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of Immobilized Lactobacillus casei on Volatile Compounds of Heat Treated Probiotic Dry-Fermented Sausages. Food Chem. 2015, 178, 201–207. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of Curing Salts and Probiotic Cultures on the Evolution of Flavor Compounds in Dry-Fermented Sausages during Ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A.; Nigam, P. Enhanced Probiotic Viability and Aromatic Profile of Yogurts Produced Using Wheat Bran (Triticum aestivum) as Cell Immobilization Carrier. Process Biochem. 2017, 55, 1–10. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Bosnea, L.; Kanellaki, M.; Ganatsios, V.; Koutinas, A.A. Wheat Bran as Prebiotic Cell Immobilisation Carrier for Industrial Functional Feta-Type Cheese Making: Chemical, Microbial and Sensory Evaluation. Biocatal. Agric. Biotechnol. 2018, 13, 75–83. [Google Scholar] [CrossRef]
- Sidira, M.; Saxami, G.; Dimitrellou, D.; Santarmaki, V.; Galanis, A.; Kourkoutas, Y. Monitoring Survival of Lactobacillus casei ATCC 393 in Probiotic Yogurts Using an Efficient Molecular Tool. J. Dairy Sci. 2013, 96, 3369–3377. [Google Scholar] [CrossRef] [PubMed]
- Ames, C.W.; Cunha, K.F.d.; Vitola, H.R.S.; Hackbart, H.C.d.S.; Sanches Filho, P.J.; Cruxen, C.E.d.S.; da Silva, W.P.; Fiorentini, Â.M. Evaluation of Potentially Probiotic Lactobacillus casei CSL3 Immobilized on Oats and Applied to Yogurt Production. J. Food Process. Preserv. 2021, 45, 15803. [Google Scholar] [CrossRef]
- Xu, D.; Feng, M.; Chu, Y.; Wang, S.; Shete, V.; Tuohy, K.M.; Liu, F.; Zhou, X.; Kamil, A.; Pan, D.; et al. The Prebiotic Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared with Rice: A Randomized, Controlled Trial. Front. Immunol. 2021, 12, 787797. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xia, J.; Yang, C.; Pan, D.; Xu, D.; Sun, G.; Xia, H. Effects of Oat Beta-Glucan Intake on Lipid Profiles in Hypercholesterolemic Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 2043. [Google Scholar] [CrossRef] [PubMed]
- Reiners, S.; Hebestreit, S.; Wedekind, L.; Kiehntopf, M.; Klink, A.; Rummler, S.; Glei, M.; Lorkowski, S.; Schlörmann, W.; Dawczynski, C. Effect of a Regular Consumption of Traditional and Roasted Oat and Barley Flakes on Blood Lipids and Glucose Metabolism-A Randomized Crossover Trial. Front. Nutr. 2023, 10, 1095245. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of a Health Claim Related to Oat Beta Glucan and Lowering Blood Cholesterol and Reduced Risk of (Coronary) Heart Disease Pursuant to Article 14 of Regulation (EC) No. 1924/2006. EFSA J. 2010, 8, e1885. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Mortazavian, A.M. Fermented Milk: The Most Popular Probiotic Food Carrier. Adv. Food Nutr. Res. 2020, 94, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of Freeze-Dried Immobilized Lactobacillus casei as Probiotic Adjunct Culture in Yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Huo, R.; Kwok, L.-Y.; Li, C.; Ma, Y.; Mi, Z.; Chen, Y. Effects of Applying Lactobacillus helveticus H9 as Adjunct Starter Culture in Yogurt Fermentation and Storage. J. Dairy Sci. 2019, 102, 223–235. [Google Scholar] [CrossRef]
- Tian, R.; Yu, Z.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Effects of Bifidobacterium longum CCFM5871 as an Adjunct Starter Culture on the Production of Fermented Milk. Food Biosci. 2022, 50, 102167. [Google Scholar] [CrossRef]
- Bottari, B.; Felis, G.E.; Salvetti, E.; Castioni, A.; Campedelli, I.; Torriani, S.; Bernini, V.; Gatti, M. Effective identification of Lactobacillus casei group species: Genome-based selection of the gene mutL as the target of a novel multiplex PCR assay. Microbiology 2017, 163, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef]
- Odamaki, T.; Yonezawa, S.; Kitahara, M.; Sugahara, Y.; Xiao, J.Z.; Yaeshima, T.; Iwatsuki, K.; Ohkuma, M. Novel multiplex polymerase chain reaction primer set for identification of Lactococcus species. Lett. Appl. Microbiol. 2011, 52, 491–496. [Google Scholar] [CrossRef]
- Nelios, G.; Santarmaki, V.; Pavlatou, C.; Dimitrellou, D.; Kourkoutas, Y. New Wild-Type Lacticaseibacillus rhamnosus Strains as Candidates to Manage Type 1 Diabetes. Microorganisms 2022, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Collado, M.C.; Meriluoto, J.; Salminen, S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 2008, 226, 1065–1073. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Dong, M.; Zhou, J.; Wang, Y. Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from traditional fermented food. Int. J. Agric. Policy Res. 2014, 3, 84–92. [Google Scholar] [CrossRef]
- Lappa, I.K.; Natsia, A.; Alimpoumpa, D.; Stylianopoulou, E.; Prapa, I.; Tegopoulos, K.; Pavlatou, C.; Skavdis, G.; Papadaki, A.; Kopsahelis, N. Novel Probiotic Candidates in Artisanal Feta-Type Kefalonian Cheese: Unveiling a Still-Undisclosed Biodiversity. Probiotics Antimicrob. Proteins 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Fuentes, M.C.; Audivert, S.; Bonachera, M.A.; Peiro, S.; Cune, J. Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic candidates to reduce cholesterol levels. J. Sci. Food Agric. 2014, 94, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Wittman, E.; Yar, N.; De Seta, F.; Larsen, B. In vitro exploration of probiotic bacteria interactions with candida using culture techniques to model dysbiotic conditions in colonized tissues. Pathogens 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Koon, S.S.; Padam, B.S.; Chye, F.Y. Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). Food Res. Int. 2017, 99 Pt 2, 950–956. [Google Scholar] [CrossRef]
- Akal, C.; Koçak, C.; Kanca, N.; Özer, B. Utilization of Reconstituted Whey Powder and Microbial Transglutaminase in Ayran (Drinking Yogurt) Production. Food Technol. Biotechnol. 2022, 60, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, U.; Kilic, M. Influence of Fermentation Conditions on Rheological Properties and Serum Separation of Ayran. J. Texture Stud. 2004, 35, 415–428. [Google Scholar] [CrossRef]
- Prapa, I.; Kompoura, V.; Pavlatou, C.; Nelios, G.; Mitropoulou, G.; Kostomitsopoulos, N.; Plessas, S.; Bezirtzoglou, E.; Karathanos, V.T.; Yanni, A.E.; et al. Effects of Free or Immobilized Pediococcus acidilactici ORE5 on Corinthian Currants on Gut Microbiome of Streptozotocin- Induced Diabetic Rats. Microorganisms 2024, 12, 2004. [Google Scholar] [CrossRef]
- Matela, K.S.; Pillai, M.K.; Thamae, T. Evaluation of pH, Titratable Acidity, Syneresis and Sensory Profiles of Some Yoghurt Samples from the Kingdom of Lesotho. Food Res. 2019, 3, 693–697. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Official Method: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Leite, A.M.O.; Leite, D.C.A.; Del Aguila, E.M.; Alvares, T.S.; Peixoto, R.S.; Miguel, M.A.L.; Silva, J.T.; Paschoalin, V.M.F. Microbiological and Chemical Characteristics of Brazilian Kefir during Fermentation and Storage Processes. J. Dairy Sci. 2013, 96, 4149–4159. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Galanis, A.; Kanellaki, M.; Tassou, C.; Akrida-Demertzi, K.; Kourkoutas, Y. Assessment of Free and Immobilized Kefir Culture in Simultaneous Alcoholic and Malolactic Cider Fermentations. Lebenson. Wiss. Technol. 2017, 76, 67–78. [Google Scholar] [CrossRef]
- Pavlatou, C.; Nikolaou, A.; Prapa, I.; Tegopoulos, K.; Plesssas, S.; Grigoriou, M.E.; Bezirtzoglou, E.; Kourkoutas, Y. Effect of Immobilized Pediococcus acidilactici ORE5 Cells on Pistachio Nuts on the Functional Regulation of the Novel Katiki Domokou-Type Cheese Microbiome. Appl. Sci. 2023, 13, 8047. [Google Scholar] [CrossRef]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef]
- Vasiee, A.; Falah, F.; Behbahani, B.A.; Tabatabaee-Yazdi, F. Probiotic Characterization of Pediococcus Strains Isolated from Iranian Cereal-Dairy Fermented Product: Interaction with Pathogenic Bacteria and the Enteric Cell Line Caco-2. J. Biosci. Bioeng. 2020, 130, 471–479. [Google Scholar] [CrossRef]
- Albano, C.; Morandi, S.; Silvetti, T.; Casiraghi, M.C.; Manini, F.; Brasca, M. Lactic Acid Bacteria with Cholesterol-Lowering Properties for Dairy Applications: In Vitro and in Situ Activity. J. Dairy Sci. 2018, 101, 10807–10818. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Liu, Y.; Zhong, J.; Zhang, D. Assessing the Safety and Probiotic Characteristics of Lacticaseibacillus rhamnosus X253 via Complete Genome and Phenotype Analysis. Microorganisms 2023, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; Gómez de Cadiñanos, L.P.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. Int. 2014, 64, 772–778. [Google Scholar] [CrossRef]
- Handa, S.; Sharma, N. In vitro study of probiotic properties of Lactobacillus plantarum F22 isolated from chhang—A traditional fermented beverage of Himachal Pradesh, India. J. Funct. Foods 2018, 45, 98–106. [Google Scholar] [CrossRef]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.-A.G.; Tsakalidou, E.; Nychas, G.-J.E.; Panagou, E.Z.; Tassou, C.C. Selection of Potential Probiotic Lactic Acid Bacteria from Fermented Olives by in Vitro Tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Kim, S.; Hwang, U.-S.; Choi, H.; Park, Y.-S. Immunostimulatory Activity of Lactococcus lactis subsp. lactis CAB701 Isolated from Jeju Cabbage. Microorganisms 2023, 11, 1718. [Google Scholar] [CrossRef]
- Wang, S.C.; Chang, C.K.; Chan, S.C.; Shieh, J.S.; Chiu, C.K.; Duh, P.-D. Effects of Lactic Acid Bacteria Isolated from Fermented Mustard on Lowering Cholesterol. Asian Pac. J. Trop. Biomed. 2014, 4, 523–528. [Google Scholar] [CrossRef]
- Shehata, M.G.; El Sohaimy, S.A.; El-Sahn, M.A.; Youssef, M.M. Screening of Isolated Potential Probiotic Lactic Acid Bacteria for Cholesterol Lowering Property and Bile Salt Hydrolase Activity. Ann. Agric. Sci. 2016, 61, 65–75. [Google Scholar] [CrossRef]
- Kimoto, H.; Ohmomo, S.; Okamoto, T. Cholesterol Removal from Media by Lactococci. J. Dairy Sci. 2002, 85, 3182–3188. [Google Scholar] [CrossRef]
- Guan, C.; Chen, X.; Jiang, X.; Zhao, R.; Yuan, Y.; Chen, D.; Zhang, C.; Lu, M.; Lu, Z.; Gu, R. In Vitro Studies of Adhesion Properties of Six Lactic Acid Bacteria Isolated from the Longevous Population of China. RSC Adv. 2020, 10, 24234–24240. [Google Scholar] [CrossRef] [PubMed]
- Takala, T.M.; Mokhtari, S.; Ahonen, S.L.; Wan, X.; Saris, P.E.J. Wild-Type Lactococcus lactis Producing Bacteriocin-like Prophage Lysins. Front. Microbiol. 2023, 14, 1219723. [Google Scholar] [CrossRef] [PubMed]
- Likotrafiti, E.; Tuohy, K.M.; Gibson, G.R.; Rastall, R.A. Development of Antimicrobial Synbiotics Using Potentially-Probiotic Faecal Isolates of Lactobacillus fermentum and Bifidobacterium longum. Anaerobe 2013, 20, 5–13. [Google Scholar] [CrossRef]
- Hor, Y.Y.; Liong, M.T. Use of Extracellular Extracts of Lactic Acid Bacteria and Bifidobacteria for the Inhibition of Dermatological Pathogen Staphylococcus Aureus. Dermatol. Sin. 2014, 32, 141–147. [Google Scholar] [CrossRef]
- Grimoud, J.; Durand, H.; Courtin, C.; Monsan, P.; Ouarné, F.; Theodorou, V.; Roques, C. In Vitro Screening of Probiotic Lactic Acid Bacteria and Prebiotic Glucooligosaccharides to Select Effective Synbiotics. Anaerobe 2010, 16, 493–500. [Google Scholar] [CrossRef]
- Feng, Y.; Qiao, L.; Liu, R.; Yao, H.; Gao, C. Potential Probiotic Properties of Lactic Acid Bacteria Isolated from the Intestinal Mucosa of Healthy Piglets. Ann. Microbiol. 2017, 67, 239–253. [Google Scholar] [CrossRef]
- Liong, M.T.; Shah, N.P. Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains. J. Dairy Sci. 2005, 88, 55–66. [Google Scholar] [CrossRef]
- Sriphannam, C.; Kummasook, A. Evaluation of probiotic properties of lactic acid bacteria isolated from fermented fish. J. Food Qual. 2020, 28, 10–20. [Google Scholar] [CrossRef]
- Cunha, C.; Uecker, J.N.; Jaskulski, I.B.; Rosolen, M.D.; Bordini, F.W.; Andreazza, R.; Hubner, S.d.O.; Fiorentini, Â.M.; da Silva, W.P.; Pieniz, S. Probiotic Characterization and Safety Assessment of Lactococcus lactis subsp. lactis R7 Isolated From Ricotta Cheese. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Menconi, A.; Kallapura, G.; Latorre, J.D.; Morgan, M.J.; Pumford, N.R.; Hargis, B.M.; Tellez, G. Identification and characterization of lactic Acid bacteria in a commercial probiotic culture. Biosci. Microbiota Food Health 2014, 33, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, R.-U.; Jahid, I.K. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiol. 2019, 19, 253. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of Yogurt Starter Cultures on the Survival of Lactobacillus acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Sohrabvandi, S.; Mohammad Mortazavian, A. The Starter Culture Characteristics of Probiotic Microorganisms in Fermented Milks: Characteristics of Probiotic Starters. Eng. Life Sci. 2012, 12, 399–409. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Yoon, K.-S. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022, 11, 3799. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, X.; Xiao, R.; Dudu, O.E.; Yang, L.; Ma, Y. Impact of Lactobacillus paracasei IMC502 in Coculture with Traditional Starters on Volatile and Non-Volatile Metabolite Profiles in Yogurt. Process Biochem. 2020, 99, 61–69. [Google Scholar] [CrossRef]
- Li, H.; Song, W.; Liu, T.; Xu, S.; Zhang, S.; Zhang, Y.; Liu, D.; Li, H.; Yu, J. Developing Novel Synbiotic Yoghurt with Lacticaseibacillus Paracasei and Lactitol: Investigation of the Microbiology, Textural and Rheological Properties. Int. Dairy J. 2022, 135, 105475. [Google Scholar] [CrossRef]
- Gülmez, M.; Güven, A.; Sezer, C.; Duman, B. Evaluation of microbiological and chemical quality of ayran samples marketed in Kars and Ankara cities in Turkey. Univ. Kafkas J. Fac. Vet. Med. 2003, 9, 49–52. [Google Scholar]
- Sen, E.; Küplülü, O. Determination of agreement to Turkish Food Codex of unpackaged ayran consumed in Ankara. Etlik Vet. Mikrobiyoloji Derg. (J. Vet. Microbiol.) 2004, 15, 55–60. [Google Scholar]
- Kocak, C.; Avsar, Y.K.; Tamucay, B. A comparative study on the production methods of ayran. Food 2006, 31, 225–231. [Google Scholar]
- Sanli, T.; Sezgin, E.; Senel, E.; Benli, M. Effects of using transglutaminase on properties of ayran in traditional production of ayran. Food 2011, 36, 217–224. [Google Scholar]
- Akkoyun, Y.; Arslan, S. The Impact of Quinoa Flour on Some Properties of Ayran. Food Sci. Nutr. 2020, 8, 5410–5418. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Tang, N.; Huang, Y.; Chen, X.; Dong, M.; Rui, X.; Zhang, Q.; Li, W. Fermentative and Physicochemical Properties of Fermented Milk Supplemented with Sea Buckthorn (Hippophae eleagnaceae L.). Lebenson. Wiss. Technol. 2022, 153, 112484. [Google Scholar] [CrossRef]
- Ge, Y.; Yu, X.; Zhao, X.; Liu, C.; Li, T.; Mu, S.; Zhang, L.; Chen, Z.; Zhang, Z.; Song, Z.; et al. Fermentation Characteristics and Postacidification of Yogurt by Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 at Optimal Inoculum Ratio. J. Dairy Sci. 2024, 107, 123–140. [Google Scholar] [CrossRef]
- Güler-akin, M.B. The Effects of Different Incubation Temperatures on the Acetaldehyde Content and Viable Bacteria Counts of Bio-yogurt Made from Ewe’s Milk. Int. J. Dairy Technol. 2005, 58, 174–179. [Google Scholar] [CrossRef]
- Dan, T.; Hu, H.; Tian, J.; He, B.; Tai, J.; He, Y. Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules 2023, 28, 2123. [Google Scholar] [CrossRef]
- Shalabi, O.M.A.K.; Hassan, A.M.; Ismail, M.M.; El-Menawy, R.K. Characterization of the Ayran Made with Commercial Probiotic Cultures for Fatty Acids, Cholesterol, Folic Acid Levels, and Anti-Oxidative Potential. Probiotics Antimicrob. Proteins 2024, 16, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Bonczar, G. The Effects of Certain Factors on the Properties of Yoghurt Made from Ewe’s Milk. Food Chem. 2002, 79, 85–91. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of Lactic Acid Bacteria on the Yogurt Flavour: A Review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mi, S.; Liu, R.-B.; Sang, Y.-X.; Wang, X.-H. Evaluation of Volatile Compounds during the Fermentation Process of Yogurts by Streptococcus thermophilus Based on Odor Activity Value and Heat Map Analysis. Int. J. Anal. Chem. 2020, 2020, 3242854. [Google Scholar] [CrossRef] [PubMed]
- Dan, T.; Chen, H.; Li, T.; Tian, J.; Ren, W.; Zhang, H.; Sun, T. Influence of Lactobacillus Plantarum P-8 on Fermented Milk Flavor and Storage Stability. Front. Microbiol. 2018, 9, 3133. [Google Scholar] [CrossRef]
- CXS 243–2003; CODEX Standard for Fermented Milks. FAO: Rome, Italy; WHO: Geneva, Switzerland, 2003. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B243-2003%252FCXS_243e.pdf (accessed on 15 October 2024).
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic Viability in Yoghurt: A Review of Influential Factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic: Expert Consensus Document. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Arellano-Ayala, K.; Lim, J.; Yeo, S.; Bucheli, J.E.V.; Todorov, S.D.; Ji, Y.; Holzapfel, W.H. Rehydration before Application Improves Functional Properties of Lyophilized Lactiplantibacillus plantarum HAC03. Microorganisms 2021, 9, 1013. [Google Scholar] [CrossRef] [PubMed]
- Aljewicz, M.; Majcher, M.; Nalepa, B. A Comprehensive Study of the Impacts of Oat β-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt. Molecules 2020, 25, 5411. [Google Scholar] [CrossRef] [PubMed]
- Irigoyen, A.; Ortigosa, M.; García, S.; Ibáñez, F.C.; Torre, P. Comparison of Free Amino Acids and Volatile Components in Three Fermented Milks. Int. J. Dairy Technol. 2012, 65, 578–584. [Google Scholar] [CrossRef]
- Acu, M.; Tonguc, I.E.; Kinik, O.; Kesenkas, H. Physicochemical, Microbiological and Sensory Characteristics of Using Different Probiotic Fermented Milk. Pak. J. Nutr. 2013, 12, 549–554. [Google Scholar] [CrossRef]
- Uzay, M.; Öztürk, H.İ.; Buzrul, S.; Maskan, M. A Study on Rheological Properties, Sensory Evaluation and Shelf Life of Ayran-Shalgam Mixtures. J. Food Sci. Technol. 2021, 58, 2479–2486. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Petrović, T.; Dimitrijević-Branković, S.; Lević, S.; Nedović, V.; Kourkoutas, Y. Survival of Spray Dried Microencapsulated Lactobacillus casei ATCC 393 in Simulated Gastrointestinal Conditions and Fermented Milk. Lebenson. Wiss. Technol. 2016, 71, 169–174. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology 2020, 9, 423. [Google Scholar] [CrossRef]
Isolate | AM | CN | Chl | E | G | S | T | V | K |
---|---|---|---|---|---|---|---|---|---|
Lactococcus lactis FBM_1321 | 0.5 | 0.25 | 4 | 1 | 8 | 8 | 0.5 | 1 | 32 |
Lc p.aracasei FBM_1327 | 1 | 1 | 8 R | 1 | 16 | 8 | 1 | N.R. 1 | 32 |
Lactococcus lactis FBM_1331 | 0.5 | 0.125 | 8 | 0.5 | 8 | 32 | 0.5 | 1 | 32 |
Lp. plantarum FBM_1422 | 0.5 | 4 R | 8 | 2 R | 64 R | N.R. 1 | 16 | N.R. 1 | 512 R |
Lc. rhamnosus FBM_1423 | 2 | 2 R | 16 R | 1 | 32 R | 32 | 1 | N.R. 1 | 256 R |
Lc. rhamnosus FBM_1433 | 1 | 2 R | 8 R | 1 | 32 R | 16 | 1 | N.R. 1 | 128 R |
Lc. rhamnosus FBM_1434 | 1 | 2 R | 8 R | 1 | 128 R | 128 R | 1 | N.R. 1 | 256 R |
Isolates Code | Bacterial Species (after Multiplex PCR) | Source of Isolation | Hydrophobicity (%) | Auto-Aggregation (%) | Adhesion to Caco-2 (%) | BSH Activity * | Cholesterol Removal (%) |
---|---|---|---|---|---|---|---|
FBM_1321 | Lactococcus lactis | Goat milk | 38.70 ± 0.21 | 8.25 ± 0.04 | 20.76 ± 2.12 | + | 30.56 ± 0.11 |
FBM_1327 | Lc. paracasei | Goat milk | 13.81 ± 0.10 | 22.31 ± 0.15 | 6.87 ± 0.13 | + | 28.78 ± 0.15 |
FBM_1331 | Lactococcus lactis | Goat milk | 68.31 ± 0.45 | 11.22 ± 0.08 | 21.04 ± 0.80 | - | - |
FBM_1422 | Lp. plantarum | Εwe milk | 28.22 ± 0.15 | 17.04 ± 0.05 | 9.86 ± 0.71 | + | 1.20 ± 0.02 |
FBM_1423 | Lc. rhamnosus | Εwe milk | 3.65 ± 0.04 | 9.88 ± 0.03 | 1.77 ± 0.77 | + | 0.17 ± 0.01 |
FBM_1433 | Lc. rhamnosus | Εwe milk | 77.84 ± 0.22 | 28.91 ± 0.04 | 17.10 ± 0.64 | + | 4.67 ± 0.02 |
FBM_1434 | Lc. rhamnosus | Εwe milk | 4.22 ± 0.08 | 10.11 ± 0.06 | 5.45 ± 0.92 | + | 2.22 ± 0.01 |
Isolate | C. difficile | Lis. monocytogenes | S. Enteritidis | E. coli |
---|---|---|---|---|
Lactococcus lactis FBM_1321 | 6.67 ± 0.03 | 8.48 ± 0.01 | 8.76 ± 0.04 | 8.94 ± 0.01 |
Lc. paracasei FBM_1327 | 5.67 ± 0.05 | 5.53 ± 0.05 | 6.46 ± 0.03 | 5.32 ± 0.05 |
Lactococcus lactis FBM_1331 | 5.92 ± 0.04 | 8.23 ± 0.04 | 8.68 ± 0.05 | 8.85 ± 0.03 |
Lp. plantarum FBM_1422 | 4.16 ± 0.08 | 5.04 ± 0.02 | 4.61 ± 0.02 | 6.59 ± 0.02 |
Lc. rhamnosus FBM_1423 | 7.56 ± 0.07 | 5.37 ± 0.01 | 7.22 ± 0.06 | 7.25 ± 0.05 |
Lc. rhamnosus FBM_1433 | 4.42 ± 0.01 | 5.57 ± 0.04 | 4.61 ± 0.03 | 7.56 ± 0.01 |
Lc. rhamnosus FBM_1434 | 5.88 ± 0.04 | 6.40 ± 0.03 | 5.37 ± 0.01 | 7.59 ± 0.01 |
Growth control (of pathogen) | 9.09 ± 0.01 | 9.08 ± 0.01 | 8.79 ± 0.02 | 9.05 ± 0.11 |
Isolate | pH | Incubation Time (h) | NaCl Concentration (% w/v) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 0% | 1% | 4% | 8% | ||
Lactococcus lactis FBM_1321 | 2.0 | 8.48 ± 0.07 | 4.55 ± 0.01 | 2.94 ± 0.07 | N.D. | 9.42 ± 0.05 | 9.40 ± 0.11 | 8.66 ± 0.08 | 5.66 ± 0.07 |
3.0 | 8.48 ± 0.03 | 4.55 ± 0.02 | 2.94 ± 0.07 | ||||||
7.0 | 8.49 ± 0.01 | 8.51 ± 0.02 | 8.52 ± 0.08 | ||||||
Lc. paracasei FBM_1327 | 2.0 | 8.16 ± 0.03 | 3.62 ± 0.07 | N.D. | N.D. | 9.36 ± 0.02 | 9.33 ± 0.12 | 9.21 ± 0.14 | 8.28 ± 0.11 |
3.0 | 5.17 ± 0.03 | 3.96 ± 0.07 | 1.77 ± 0.01 | ||||||
7.0 | 8.17 ± 0.02 | 8.21 ± 0.01 | 8.19 ± 0.03 | ||||||
Lactococcus lactis FBM_1331 | 2.0 | 8.27 ± 0.01 | 2.01 ± 0.08 | N.D. | N.D. | 9.09 ± 0.07 | 9.02 ± 0.13 | 9.01 ± 0.02 | 7.04 ± 0.11 |
3.0 | 5.56 ± 0.09 | 3.72 ± 0.04 | 2.80 ± 0.07 | ||||||
7.0 | 8.27 ± 0.05 | 8.29 ± 0.01 | 8.28 ± 0.02 | ||||||
Lp. plantarum FBM_1422 | 2.0 | 8.62 ± 0.01 | 4.47 ± 0.01 | 2.00 ± 0.06 | N.D. | 9.66 ± 0.03 | 9.52 ± 0.11 | 9.40 ± 0.22 | 6.65 ± 0.01 |
3.0 | 6.91 ± 0.06 | 6.47 ± 0.01 | 6.20 ± 0.16 | ||||||
7.0 | 8.62 ± 0.01 | 8.63 ± 0.02 | 8.61 ± 0.05 | ||||||
Lc. rhamnosus FBM_1423 | 2.0 | 8.63 ± 0.03 | 4.15 ± 0.2 | N.D. | N.D. | 9.45 ± 0.05 | 9.38 ± 0.05 | 9.28 ± 0.08 | 7.64 ± 0.02 |
3.0 | 7.02 ± 0.1 | 3.93 ± 0.11 | 3.14 ± 0.02 | ||||||
7.0 | 8.62 ± 0.01 | 8.64 ± 0.02 | 8.62 ± 0.01 | ||||||
Lc. rhamnosus FBM_1433 | 2.0 | 8.15 ± 0.01 | 2.60 ± 0.04 | N.D. | N.D. | 9.21 ± 0.08 | 9.15 ± 0.09 | 8.69 ± 0.14 | 6.90 ± 0.15 |
3.0 | 4.75 ± 0.07 | 3.36 ± 0.04 | 3.06 ± 0.07 | ||||||
7.0 | 8.15 ± 0.04 | 8.16 ± 0.05 | 8.15 ± 0.01 | ||||||
Lc. rhamnosus FBM_1434 | 2.0 | 8.33 ± 0.09 | 3.11 ± 0.01 | N.D. | N.D. | 9.42 ± 0.04 | 9.37 ± 0.01 | 8.90 ± 0.01 | 7.49 ± 0.08 |
3.0 | 6.70 ± 0.06 | 5.54 ± 0.01 | 3.14 ± 0.04 | ||||||
7.0 | 8.32 ± 0.01 | 8.34 ± 0.05 | 8.33 ± 0.01 |
Parameter | Storage Time (Days) | YC | YC_O | Y_WF | Y_WIO | Y_FDF | Y_FDIO |
---|---|---|---|---|---|---|---|
pH | 1 | 4.32 ± 0.03 | 4.38 ± 0.02 | 4.48 ± 0.04 b | 4.49 ± 0.01 b,c | 4.57 ± 0.01 b | 4.60 ± 0.01 b,c,d |
10 | 4.31 ± 0.02 | 4.35 ± 0.01 | 4.29 ± 0.01 a | 4.33 ± 0.02 a | 4.30 ± 0.02 a | 4.36 ± 0.01 a | |
20 | 4.30 ± 0.02 | 4.27 ± 0.02 | 4.41 ± 0.02 a,c | 4.46 ± 0.02 a,b,c | 4.44 ± 0.03 b,c | 4.28 ± 0.05 a,d,e,f | |
30 | 4.31 ± 0.02 | 4.34 ± 0.01 | 4.30 ± 0.01 a | 4.30 ± 0.06 b,c,d | 4.46 ± 0.01 a,e | 4.41 ± 0.04 a | |
TA (%) | 1 | 0.68 ± 0.06 | 0.59 ± 0.06 | 0.59 ± 0.06 | 0.69 ± 0.01 | 0.68 ± 0.06 | 0.66 ± 0.06 |
10 | 0.73 ± 0.01 | 0.83 ± 0.03 | 0.86 ± 0.06 a | 0.82 ± 0.01 | 0.72 ± 0.01 | 0.75 ± 0.08 | |
20 | 0.90 ± 0.13 | 0.86 ± 0.06 a | 1.09 ± 0.01 a | 0.99 ± 0.13 a,d | 0.78 ± 0.08 | 0.77 ± 0.07 d | |
30 | 0.50 ± 0.06 | 0.77 ± 0.06 b | 1.10 ± 0.08 a,b,c | 0.77 ± 0.06 b | 0.95 ± 0.06 a,b,d | 0.87 ± 0.08 b | |
AC | AC_O | A_WF | A_WIO | A_FDF | A_FDIO | ||
pH | 1 | 4.19 ± 0.05 | 4.21 ± 0.03 | 4.14 ± 0.02 b | 4.14 ± 0.02 b | 4.04 ± 0.03 b,c,d,e | 4.14 ± 0.02 b,c,f |
10 | 4.13 ± 0.01 | 4.15 ± 0.03 | 3.96 ± 0.01 a,b,c | 3.96 ± 0.01 a,b,c | 3.92 ± 0.03 a,b,c | 3.96 ± 0.01 a,b,c | |
20 | 4.11 ± 0.01 | 4.16 ± 0.01 | 3.89 ± 0.04 a,b,c | 3.89 ± 0.04 a,b,c | 3.86 ± 0.01 a,b,c,e | 3.89 ± 0.04 a,b,c | |
30 | 4.11 ± 0.01 | 4.12 ± 0.01 | 3.82 ± 0.04 a,b,c | 3.82 ± 0.04 a,b,c | 3.76 ± 0.04 a,b,c,d,e | 3.82 ± 0.04 a,b,c,f | |
TA (%) | 1 | 0.59 ± 0.07 | 0.88 ± 0.04 | 1.20 ± 0.07 b,c | 0.96 ± 0.03 b,d | 0.97 ± 0.07 b,c,d | 1.62 ± 0.03 b,c,d,e,f |
10 | 1.08 ± 0.03 | 1.21 ± 0.01 | 1.47 ± 0.04 a,b,c | 1.17 ± 0.09 a,d | 1.47 ± 0.04 a,b,c,e | 1.69 ± 0.04 b,c,d,e,f | |
20 | 1.20 ± 0.07 | 1.26 ± 0.01 | 1.45 ± 0.04 a,b,c | 1.28 ± 0.03 a,d | 1.66 ± 0.06 a,b,c,d,e | 1.69 ± 0.01 b,c,d,e | |
30 | 1.15 ± 0.01 a | 1.17 ± 0.09 a | 1.49 ± 0.01 a,b,c | 1.29 ± 0.04 a,d | 1.64 ± 0.00 a | 1.90 ± 0.04 a,b,c,d,e |
Sugars | Acids | ||||
---|---|---|---|---|---|
Samples | Glucose | Galactose | Lactose | Lactic acid | Citric acid |
YC | 1.75 ± 0.01 | 7.22 ± 0.19 | 21.08 ± 0.58 | 5.24 ± 0.04 | 1.43 ± 0.03 |
YC_O | 1.80 ± 0.14 | 6.61 ± 0.23 | 19.66 ± 0.43 | 5.04 ± 0.32 | 1.52 ± 0.04 |
Y_WF | 1.15 ± 0.03 a,b | 6.77 ± 0.18 | 19.92 ± 0.51 | 4.88 ± 0.15 | 1.77 ± 0.05 a,b |
Y_WIO | 1.16 ± 0.01 a,b | 6.44 ± 0.36 | 18.49 ± 0.87 | 4.71 ± 0.25 | 1.72 ± 0.09 a |
Y_FDF | 1.31 ± 0.08 a,b | 7.20 ± 0.04 | 19.00 ± 0.49 | 5.04 ± 0.02 | 1.79 ± 0.07 a,b |
Y_FDIO | 1.10 ± 0.13 a,b | 6.45 ± 0.07 | 18.99 ± 0.90 | 4.65 ± 0.33 | 1.74 ± 0.07 a |
AC | 0.58 ± 0.01 | 3.03 ± 0.14 | 9.07 ± 0.30 | 3.58 ± 0.08 | 1.10 ± 0.02 |
AC_O | 0.61 ± 0.01 | 2.90 ± 0.05 | 8.80 ± 0.04 | 3.60 ± 0.03 | 1.01 ± 0.01 |
A_WF | 0.51 ± 0.02 b | 2.25 ± 0.11 a,b | 10.95 ± 0.05 a,b | 3.40 ± 0.07 | 1.05 ± 0.03 |
A_WIO | 0.56 ± 0.01 | 2.34 ± 0.06 a,b | 10.84 ± 0.19 a,b | 3.44 ± 0.05 | 1.05 ± 0.03 |
A_FDF | 0.52 ± 0.03 | 2.18 ± 0.12 a,b | 10.62 ± 0.59 a,b | 4.07 ± 0.23 a,b,c,d | 1.05 ± 0.04 |
A_FDIO | 0.62 ± 0.04 c,e | 2.13 ± 0.13 a,b | 11.17 ± 0.80 a,b | 4.12 ± 0.10 a,b,c,d | 1.04 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prapa, I.; Pavlatou, C.; Kompoura, V.; Nikolaou, A.; Stylianopoulou, E.; Skavdis, G.; Grigoriou, M.E.; Kourkoutas, Y. A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products. Fermentation 2025, 11, 37. https://doi.org/10.3390/fermentation11010037
Prapa I, Pavlatou C, Kompoura V, Nikolaou A, Stylianopoulou E, Skavdis G, Grigoriou ME, Kourkoutas Y. A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products. Fermentation. 2025; 11(1):37. https://doi.org/10.3390/fermentation11010037
Chicago/Turabian StylePrapa, Ioanna, Chrysoula Pavlatou, Vasiliki Kompoura, Anastasios Nikolaou, Electra Stylianopoulou, George Skavdis, Maria E. Grigoriou, and Yiannis Kourkoutas. 2025. "A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products" Fermentation 11, no. 1: 37. https://doi.org/10.3390/fermentation11010037
APA StylePrapa, I., Pavlatou, C., Kompoura, V., Nikolaou, A., Stylianopoulou, E., Skavdis, G., Grigoriou, M. E., & Kourkoutas, Y. (2025). A Novel Wild-Type Lacticaseibacillus paracasei Strain Suitable for the Production of Functional Yoghurt and Ayran Products. Fermentation, 11(1), 37. https://doi.org/10.3390/fermentation11010037