Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, V.C.N. Small-scale An aerobic Digesters in Vietnam—Development and Challenges. J. Viet. Environ. 2011, 1, 12–18. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2021, 5, 2911–2942. [Google Scholar] [CrossRef]
- Abubakar, A.M. Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production. J. Eng. Res. Sci. 2022, 1, 170–187. [Google Scholar] [CrossRef]
- Guimaraes, C.D.; Maia, D.R.D. Development of Anaerobic Biodigester for The Production of Biogas Used in Semi-Continuous System Bioprocesses: An Efficient Alternative for Co-Digestion of Low Biodegradability Biomass. Biomass 2023, 3, 18–30. [Google Scholar] [CrossRef]
- Jegede, A.O.; Zeeman, G.; Bruning, H. A review of mixing, design and loading conditions in household anaerobic digesters. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2117–2153. [Google Scholar] [CrossRef]
- Banerjee, S.; Prasad, N.; Selvaraju, S. Reactor Design for Biogas Production-A Short Review. J. Energy Power Technol. 2022, 4, 1–14. [Google Scholar] [CrossRef]
- Pham, C.H.; Vu, C.C.; Sommer, S.G.; Bruun, S. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam, Asian Australas. J. Anim. Sci. 2014, 27, 1050–1056. [Google Scholar]
- Zaki, M.B.M.; Shamsudin, R.; Yusoff, M.Z.M. Portable Bio-digester System for Household Use—A Review. Adv. Agric. Food Res. J. 2021, 2, a000014. [Google Scholar]
- Randjawali, E.; Waris, A. Design and testing of mini-size biogas plant. J. Phys. Conf. Ser. 2016, 739, 012038. [Google Scholar] [CrossRef]
- Budiman, I. The Role of Fixed-Dome and Floating Drum Biogas Digester for Energy Security in Indonesia. Indones. J. Energy 2020, 3, 83–93. [Google Scholar] [CrossRef]
- Postawa, K.; Szczygieł, J.; Kułażyński, M. Innovations in anaerobic digestion: A model-based study. Biotechnol. Biofuels 2021, 14, 19. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; Wiley-Vch Verlag GmbH & Co., Ltd.: Weinheim, Germany, 2011. [Google Scholar]
- Akunna, J.C. Anaerobic Waste-Wastewater Treatment and Biogas Plants; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Achinas, S.; Achinas, V.; Euverink, G.J. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Marchioro, V.; Steinmetz, R.L.; Amaral, A.C.; Gaspareto, T.C.; Treichel, H.; Kunz, A. Poultry Litter Solid State Anaerobic Digestion: Effect of Digestate Recirculation Intervals and Substrate/Inoculum Ratios on Process Efficiency. Front. Sustain. Food Syst. 2018, 2, 46. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Ali, M.M.; Aziz, N.I.A.; Ashraf, M.A.; Halim, A.A.; Lee, K.E.; Dris, M. Biogas Production from Goat and Chicken Manure in Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 529–535. [Google Scholar] [CrossRef]
- Rangseesuriyachai, T.; Boonnorat, J.; Glanpracha, N.; Khetkorn, W.; Thiamngoen, P.; Pinpatthanapong, K. Anaerobic Co-digestion of Elephant Dung and Biological Pretreated Napiergrass: Synergistic Effect and Kinetics of Methane Production. Biomass Bioenergy 2023, 175, 106849. [Google Scholar] [CrossRef]
- Gaworski, M.; Jabłoński, S.; Pawlaczyk-Graja, I.; Ziewiecki, R.; Rutkowski, P.; Wieczyńska, A.; Gancarz, R.; Tukaszewicz, M. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnol. Biofuels 2017, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Adamu, H.; Bello, U.; Yuguda, A.U.; Tafida, U.I.; Jalam, A.M.; Sabo, A.; Qamar, M. Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renew. Sustain. Energy Rev. 2023, 186, 113686. [Google Scholar] [CrossRef]
- Lahbab, A.; Djaafri, M.; Kalloum, S.; Benatiallah, A.; Atelge, M.R.; Atabani, A.E. Co-digestion of vegetable peel with cow dung without external inoculum for biogas production: Experimental and a new modelling test in a batch mode. Fuel 2021, 306, 121627. [Google Scholar] [CrossRef]
- Nindhia, T.G.; McDonald, M.; Styles, D. Greenhouse Gas Mitigation and Rural Electricity Generation by a Novel Two-Stroke Biogas Engine. J. Clean. Prod. 2021, 280, 124473. [Google Scholar] [CrossRef]
- Taghinazhad, J.; Abdib, R.; Adlc, M. Kinetic and Enhancement of Biogas Production for The Purpose of Renewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System. Int. J. Renew. Energy Dev. 2017, 6, 37–44. [Google Scholar] [CrossRef]
- Fahriansyah; Andrianto, M.; Sriharti. Design of conventional mixer for biogas digester. IOP Conf. Ser. Earth Environ. Sci. 2019, 277, 012017. [Google Scholar] [CrossRef]
- Elsawy, K.; E-Kadi, S.; Elhenawy, Y.; Abdelmotalip, A.; Ibrahim, I.A. Biogas Production by Anaerobic Digestion of Cow Dung using Floating Type Fermenter. J. Environ. Treat. Tech. 2021, 9, 446–451. [Google Scholar]
- Nindhia, T.G.; Sucipta, I.M.; Surata, I.W.; Adiatmika, I.K.; Negara, D.N.; Negara, K.M.T. Processing of Steel Chips Waste for Regenerative type of Biogas Desulfurizer. Int. J. Renew. Energy Res. 2013, 3, 84–87. [Google Scholar]
- Pathak, S.S.; Mendon, S.K.; Blanton, M.D.; Rawlins, J.W. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers) for Aluminum Alloys. Metals 2012, 2, 353–376. [Google Scholar] [CrossRef]
- Nindhia, T.G.; Surata, I.W.; Swastika, I.D.P.; Widiana, P. Processing Zinc from Waste of Used Zinc-Carbon Battery with Natrium Chloride (NaCl) for Biogas Desulfurizer. Key Eng. Mater. 2016, 705, 368–373. [Google Scholar] [CrossRef]
- Bridgeman, J. Computational fluid dynamics modeling of sewage sludge mixing in an anaerobic digester. Adv. Eng. Softw. 2012, 44, 54–62. [Google Scholar] [CrossRef]
- Conklin, A.S.; Chapman, T.; Zahller, J.D.; Stensel, H.D.; Ferguson, J.F. Monitoring the role of aceticlasts in anaerobic digestion: Activity and capacity. Water Res. 2008, 42, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Halalsheh, M.; Kassab, G.; Yazajeen, H.; Qumsieh, S.; Field, J. Effect of increasing the surface area of primary sludge on anaerobic digestion at low temperature. Bioresour. Technol. 2011, 102, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Karapaju, P.L.; Rintala, J.A. Effects of solid-liquid separation on recovering residual methane and nitrogen of a digested dairy cow manure. Bioresour. Technol. 2008, 99, 120–127. [Google Scholar] [CrossRef]
- Maamri, S.; Amrani, M. Biogas Production from Waste Activated Sludge Using Cattle Dung Inoculums: Effect of total solid contents and kinetics study. Energy Procedia 2014, 50, 352–359. [Google Scholar] [CrossRef]
- Bella, K.; Rao, P.V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manag. 2022, 308, 114581. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hadi, M.A.; El-Azeem, S.A.A. Effect of heating, mixing and digester type on biogas production from buffalo dung. Misr J. Agric. Eng. 2008, 25, 1454–1477. [Google Scholar] [CrossRef]
- Rianawati, E.; Damanhuri, E.; Handajani, M.; Padmi, T. Comparison of Household and Communal Biogas Digester Performance to Treat Kitchen Waste, Case Study: Bandung City, Indonesia. E3S Web Conf. 2018, 73, 01019. [Google Scholar] [CrossRef]
- Streitwieser, D.A. Comparison of The Anaerobic Digestion at The Mesophilic and Thermophilic Temperature Regime of Organic Wastes from The Agribusiness. Bioresour. Technol. 2017, 241, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.B.; Pereira, A.P.; Pastore, B.M.; Moreira, R.F.; Ferreira, M.S.; Fai, A.E. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. LWT Food Sci. Technol. 2020, 124, 109028. [Google Scholar] [CrossRef]
- Dana, I.W.A.R.; Lie, D.; Adnyana, I.W.B.; Nindhia, T.G.; Khanal, S.K.; Nindhia, T.S. Comparison of Fuel Consumption and Emission of Small Two-stroke Engine of Electric Generator Fuelled by Methanol, Biogas, and Mixed Methanol-biogas. J. Appl. Eng. Sci. 2022, 20, 1034–1039. [Google Scholar] [CrossRef]
- Haryanto, A.; Nindhia, T.G.; Hasanudin, W.R.U.; Saputrat, W.; Santosa, A.B.; Tamrin; Triyono, S. Effect of load on the performance of a family scale biogas-fuelled electricity generator. IOP Conf. Ser. Earth Environ. Sci. 2019, 355, 012078. [Google Scholar] [CrossRef]
- Sodha, M.S.; Ram, S.; Bansal, N.K.; Bansal, P.K. Effect of PVC greenhouse in increasing the biogas production in temperate cold climatic conditions. Energy Convers. Manag. 1987, 27, 83–90. [Google Scholar] [CrossRef]
- Mozhiarasi, V. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere 2022, 288, 132604. [Google Scholar] [CrossRef] [PubMed]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; Taherzadeh, M.J. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, R.; Vasmara, C.; Orsi, A. Inoculum Production from Pig Slurry for Potential Use in Agricultural Biogas Plants. Sustain. Energy Technol. Assess. 2022, 52, 102310. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.; Müller, B.; Schnürer, A. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour. Technol. 2017, 245, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Owamah, H.I.; Ikpeseni, S.C.; Alfa, M.I.; Oyebisi, S.O.; Gopikumar, S.; Samuel, O.D.; Ilabor, S.C. Influence of Inoculum/Substrate Ratio on Biogas Yield and Kinetics from The Anaerobic Co-digestion of Food Waste and Maize Husk. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100558. [Google Scholar] [CrossRef]
- Suksong, W.; Mamimin, C.; Prasertsan, P.; Kongjan, P.; O-Thong, S. Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production. Ind. Crops Prod. 2019, 133, 193–202. [Google Scholar] [CrossRef]
- Sohail, M.; Khan, A.; Badshah, M.; Degen, A.; Yang, G.; Liu, H.; Zhou, J.; Long, R. Yak Rumen Fluid Inoculum Increases Biogas Production from Sheep Manure Substrate. Bioresour. Technol. 2022, 362, 127801. [Google Scholar] [CrossRef] [PubMed]
- Papilo, P.; Marimin, M.; Hambali, E.; Machfud, M.; Yani, M.; Asrol, M.; Evanila, E.; Prasetya, H.; Mahmud, J. Palm Oil-based Bioenergy Sustainability and Policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon 2022, 8, e10919. [Google Scholar] [CrossRef] [PubMed]
- Mahlia, T.M.; Abdulmuin, M.; Alamsyah, T.M.; Mukhlishien, D. An Alternative Energy Source from Palm Wastes Industry for Malaysia and Indonesia. Energy Convers. Manag. 2001, 42, 2109–2118. [Google Scholar] [CrossRef]
- Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.; Husnawan, M.; Liaquat, A.M. Prospects of Dedicated Biodiesel Engine Vehicles in Malaysia and Indonesia. Renew. Sustain. Energy Rev. 2011, 15, 220–235. [Google Scholar] [CrossRef]
- Saidu, M.; Yuzir, A.; Salim, M.R.; Salmiati; Azman, S.; Abdullah, N. Influence of Palm Oil Mill Effluent as Inoculum on Anaerobic Digestion of Cattle Manure for Biogas Production. Bioresour. Technol. 2013, 141, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, L.; Liu, Y.; Zhang, Q.; Ruan, R.; Luo, X. Effect of Acclimatized Paddy Soil Microorganisms Using Swine Wastewater on Degradation of Rice Straw. Bioresour. Technol. 2021, 332, 125039. [Google Scholar] [CrossRef] [PubMed]
- Xinga, B.S.; Hana, Y.; Wanga, X.C.; Caoa, S.; Wena, J.; Zhanga, K. Acclimatization of Anaerobic Sludge with Cow Manure and Realization of High-rate Food Waste Digestion for Biogas Production. Bioresour. Technol. 2020, 315, 123830. [Google Scholar] [CrossRef] [PubMed]
- Budiman, I. The complexity of barriers to biogas digester dissemination in Indonesia: Challenges for agriculture waste management. J. Mater. Cycles Waste Manag. 2021, 23, 1918–1929. [Google Scholar] [CrossRef]
Substrate | Regression Modeling | Formula | Coefficient of Determination (R2) |
---|---|---|---|
Cattle dung | Linear | y = 15.714x − 16.462 | 0.9879 |
Cattle dung + cabbage interspersed | Polynomial order 3 | y = −0.0225x3 + 0.8629x2 + 4.8457x + 61.285 | 0.996 |
Substrate | CH4 Range Compositions (%) | CO2 Range Composition (%) | Temperature Range Inside Digester (°C) | Ambient Temperature Range (°C) | pH Range |
---|---|---|---|---|---|
Cattle dung | 41–78 | 22–48 | 30–37 | 25–34 | 6–8 |
Cattle dung + cabbage interspersed | 20–60 | 33–68 | 30–37 | 30–35 | 6.6–7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nindhia, T.S.; Bidura, I.G.N.G.; Sampurna, I.P.; Nindhia, T.G.T. Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation 2025, 11, 50. https://doi.org/10.3390/fermentation11020050
Nindhia TS, Bidura IGNG, Sampurna IP, Nindhia TGT. Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation. 2025; 11(2):50. https://doi.org/10.3390/fermentation11020050
Chicago/Turabian StyleNindhia, Tjokorda Sari, I Gusti Nyoman Gde Bidura, I Putu Sampurna, and Tjokorda Gde Tirta Nindhia. 2025. "Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste" Fermentation 11, no. 2: 50. https://doi.org/10.3390/fermentation11020050
APA StyleNindhia, T. S., Bidura, I. G. N. G., Sampurna, I. P., & Nindhia, T. G. T. (2025). Utilization of Continuous Anaerobic Digesters for Processing Cattle Dung and Cabbage (Brassica oleracea) Waste. Fermentation, 11(2), 50. https://doi.org/10.3390/fermentation11020050