The Health Benefits and Functional Properties of Gochujang: A Comprehensive Review of Fermentation and Bioactive Compounds
Abstract
:1. Introduction
2. History of Gochujang
3. Key Ingredients and Techniques in Traditional Gochujang Recipes
4. Taste Component of Gochujang After Fermentation
5. The Role of Microorganisms in Gochujang Fermentation
6. Bioactive Compounds in Gochujang: Key Components for Health
6.1. Physiologically Active Substances in Gochujang
Bioactive Compounds | Units | Contents | Ref. | |
---|---|---|---|---|
Vitamins | Thiamine (Vitamin B1) | mg/kg | 2.797–5.785 1 (3.790 ± 0.949 2) | [41] |
Riboflavin (Vitamin B2) | mg/kg | 2.300–3.314 (2.894 ± 0.357) | ||
Niacin (Vitamin B3) | mg/kg | 16.088–31.259 (24.949 ± 5.298) | ||
Biotin (Vitamin B7) | µg/100 g | 2.435–6.469 | [42] | |
Cobalamin (Vitamin B12) | µg/100 g | 0.03–0.15 (0.08 ± 0.04) | [43] | |
μg/100 g dry wt | 0.21 ± 0.01 | [44] | ||
Isoflavones | Daidzin | μg/g | 0.66–7.61 (2.94 ± 2.53) | [32] |
Glycitin | 0.23–2.03 (0.93 ± 0.58) | |||
Genistin | 2.24–11.88 (6.37 ± 3.76) | |||
Daidzein | 13.00–80.58 (47.83 ± 23.50) | |||
Glycitein | 2.32–12.63 (6.95 ± 3.41) | |||
6″-O-acetylgenistin | 2.60–5.65 (3.74 ± 0.98) | |||
Genistein | 13.29–75.67 (42.99 ± 22.30) | |||
Polyphenols | Total Polyphenols | GAE mg/100 g | 195.59–342.90 | [31] |
mg GAE/g | 9.9718 ± 1.63 | [47] | ||
Total phenol | GAE mg/g | 0.05–0.73 | [48] | |
Total Flavonoids | RE mg/100 g | 51.21–110.3 | [31] | |
mg QE/g | 0.1425 ± 0.07 | [47] | ||
Amino acids | Thioproline | mg/kg | 0.010–0.038 | [49] |
Methylthioproline | mg/kg | 0.015–0.112 | ||
Capsaicinoids | Capsaicin | μg/g | 24.3–56.7 | [50] |
mg/100 g | 2.38–3.65 | [51] | ||
Dihydrocapsaicin | mg/100 g | 1.53–2.30 |
6.2. Anti-Cancer and Anti-Mutagenic Effects of Gochujang
Health Benefits | Model | Group | Concentration (Gochujang Extract) | Duration | Measured Parameter | Results | Ref. |
---|---|---|---|---|---|---|---|
Anti-cancer | CRC cells (HCT116, Caco2, and HT29) | Gochujang | 0, 0.25, 0.5, 1, 2, 4, 8, 10 mg/mL | 24, 48, and 72 h | Cell viability | Decreased | [47] |
0, 0.5, 1.5, 2.5 mg/mL | 10 days | Colony formation | Decreased | ||||
0, 0.25, 0.5, and 1 mg/mL | 72 h | Migration | Decreased | ||||
HCT116, Caco2 | 0, 0.5, and 2 mg/mL | 24 h | ROS levels | Increased | |||
HT-29, AGS | Commercial gochujang (with fermented wheat grains) | 0.5, 1.0 mg/mL | 72 h | Cell viability | Decreased | [58] | |
HT-29, AGS | Shickhae-gochujang, Bab-gochujang, Deuk-gochujang | AGS (2.5 mg/mL) HT-29 (1.0 mg/mL) | 72 h | Cancer cell growth | Inhibition | [61] | |
AGS | Traditional gochujang, Commercial gochujang | 100, 200 µg/assay | 72 h | Cell viability | Inhibition | [60] | |
AGS | Gochujang (with fermented wheat grains) | 5 mg/mL | 72 h | Cell viability | Inhibition | [59] | |
Anti-mutagenic | TA100 | Commercial gochujang (with fermented wheat grains) | 2.5, 5 mg/plate | 48 h | Revertant colony count (MNNG-induced) | Decreased | [58] |
TA100 | Shickhae-gochujang, Bab-gochujang, Deuk-gochujang | 2.5 mg/mL | 48 h | Revertant colony count (MNNG-induced, AFB1-induced) | Decreased | [61] | |
TA98, TA100 | Traditional gochujang, Commercial gochujang | 1.25, 2.5 mg/plate | 48 h | Revertant colony count (MNNG-induced, AFB1-induced) | Decreased | [62] |
6.3. Anti-Inflammatory Effects of Gochujang
Model | Group | Dose/Concentration | Duration | Measured Parameter | Results | Ref. |
---|---|---|---|---|---|---|
HD -induced obese mice | HBM gochujang, DBM gochujang | 10% of diet | 13 weeks | Hepatic fat, AST, ALT, Hepatic TC, Hepatic TG, hepatic lipid droplets, Inflammatory cytokines (TNF-α, IL-1β) | Decreased | [29] |
JNK/IκB/NF-κB signaling pathway activation | Suppressed | |||||
Gut microbiota composition | Improved balance | |||||
DSS -induced colitis rats | Gochujang | 2 g/kg BW | 14 days (7 days 3% DSS +7 days recovery) | DAI, IL-1β and IL-6 levels | Decreased | [6] |
colon length, colon weight/length ratio | Restored | |||||
Pro-inflammatory cytokine genes (TNF-α, IL-6, and IL-1β), Inflammation-related enzyme genes (iNOS, COX-2) | Downregulated | |||||
gut microbiota composition | Improved | |||||
DSS -induced colitis mice | Traditional gochujang | 500 mg/kg/day | 2 weeks (Gochujang) +7 days (3% DSS) | Large intestine length | Inhibited decreased | [76] |
Serum TNF-α and IL-6 levels, histological score | Decreased |
6.4. Anti-Obesity Effects of Gochujang
Model | Group | Dose/Concentration | Duration | Measured Parameter | Results | Ref. |
---|---|---|---|---|---|---|
HD-induced obese mice | HBM gochujang, DBM gochujang | 10% of diet | 13 weeks | Body weight, visceral fat volume, epididymal fat, Serum lipid levels (TG, TC, LDL, VLDL), Liver TG, TC, pro-inflammatory cytokines (IL-1β, TNF-α) | Decreased | [29] |
Gut microbiota imbalance | Improved | |||||
HD-induced obese mice | Traditional gochujang | 10% of diet | 12 weeks | Body weight, subcutaneous fat weight, Hepatic TG | Decreased | [81] |
Serum HDL-CHL, BAT activation-related protein levels | Increased | |||||
WAT browning-associated protein levels | Increased under cold exposure | |||||
Overweight/Obese adults | Traditional gochujang commercial gochujang | 19 g/day (Gochujang powder) | 6 weeks | Waist circumference, visceral fat area, hip circumference | Decreased | [79] |
Lipid profile (TG, TC, LDL-C) | Improved | |||||
HD-induced obese rats | RG gochujang, WG gochujang | 10% of diet | 8 weeks | Body weight gain, weights of liver and fat pads, Serum TG, TC, LDL-C, leptin, Hepatic TG, lipid accumulation, adipocyte size | Decreased | [85] |
OP9 pre-adipocyte cells | Traditional gochujang | 300 µg/mL (Gochujang extract) | 48 h | Adipogenesis | Inhibition | [86] |
HD-induced obese rats | Commercial gochujang (with different kinds of koji) | 10% (w/w) | 8 weeks | Body weight gain, liver weight, epididymal and mesenteric fat pad weights, serum leptin levels, hepatic TG, TC, adipocyte size | Decreased | [87] |
Lipogenic gene expression (FAS, ACC, G6PDH) | Downregulated | |||||
Overweight/Obese adults | Gochujang | 32 g/day | 12 weeks | Plasma TG, TG/HDL ratio, | Decreased | [88] |
Insulin resistance markers | Improved | |||||
HD-induced obese rats | Gochujang (fermented with rice koji and soybean meju) | 10% (w/w) | 5 weeks | Body weight gains, epididymal fat weights, serum TG, liver TG levels | Decreased | [89] |
HD-induced obese rats | Commercial gochujang (made with final fermented wheat grains) | 10% of diet | 30 days | Body weight, weight gain, food efficiency ratio, adipose tissue weight, total lipid, total TG, TC | Decreased | [82] |
HDL-cholesterol | Increase | |||||
Overweight adults | Gochujang | 32 g/day | 12 weeks | Visceral fat, TG, ApoB | Decreased | [90] |
3T3-L1 pre-adipocytes | Gochujang | 0.1, 1 mg/mL (Gochujang extract) | 24 h | Adipocyte size, leptin secretion | Decreased | [84] |
Glycerol secretion | Increased | |||||
TNF-α, PPAR-γ, SREBP-1c mRNA expression | Downregulated | |||||
HD-induced obese rats | Fermented traditional gochujang | 10% of diet | 4 weeks | Body weight, epididymal fat pad weight, perirenal fat pad weight | Decreased | [83] |
Lipid profiles | Improved |
6.5. Anti-Diabetic Effects of Gochujang
Model | Group | Dose/ Concentration | Duration | Measured Parameter | Results | Ref. |
---|---|---|---|---|---|---|
Scopolamine-treated rats on a high-fat diet | Traditional gochujang, Factory-made gochujang | 500 mg/kg body weight/day | 8 weeks | Oral glucose tolerance | Improved | [92] |
Serum insulin, Insulin resistance | Decreased | |||||
GLP-1 | Increased | |||||
Gut microbiota composition | Improved | |||||
OP9 pre-adipocyte cells | Gochujang | 300 µg/mL (Gochujang extract) | 48 h | α-Glucosidase inhibitory activity | Inhibition | [86] |
90% Pancreatectomized rats fed a high-fat diet | Traditional gochujang, modern gochujang | 5% (w/w) in diet | 8 weeks | Body weight, visceral fat, serum leptin levels, hepatic triacylglycerol storage | Decreased | [91] |
Insulin sensitivity | Improved |
6.6. Additional Health Advantages of Gochujang Consumption
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, C.; Subasinghe, S. The Wonderful World of Fermentation. Food Technol. 2024, 78, 67–71. [Google Scholar]
- Tamang, J.P.; Kailasapathy, K. Fermented Foods and Beverages of the World; CRC Press: Boca Raton, FL, USA, 2010; pp. 111–126. [Google Scholar]
- Sanlier, N.; Gokcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Wan-Mohtar, W.A.A.Q.I.; Ilham, Z.; Jamaludin, A.A.; David, W.; Mohd Zaini, N.A. Fermented foods as alternative functional foods during post-pandemic in Asia. Front. Food Sci. Technol. 2022, 2, 1047970. [Google Scholar] [CrossRef]
- Jo, S.J.; Kim, J.W.; Choi, H.O.; Kim, J.H.; Kim, H.J.; Woo, S.H.; Han, B.H. Capsanthin inhibits both adipogenesis in 3T3-L1 preadipocytes and weight gain in high-fat diet-induced obese mice. Biomol. Ther. 2017, 25, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mahoro, P.; Moon, H.J.; Yang, H.J.; Kim, K.A.; Cha, Y.S. Protective effect of gochujang on inflammation in a DSS-induced colitis rat model. Foods 2021, 10, 1072. [Google Scholar] [CrossRef]
- Kwak, C.S.; Lee, M.S.; Oh, S.I.; Park, S.C. Discovery of novel sources of vitamin B12 in traditional Korean foods from nutritional surveys of centenarians. Curr. Gerontol. Geriatr. Res. 2010, 2010, 374897. [Google Scholar] [CrossRef] [PubMed]
- Mun, E.-G.; Kim, B.; Kim, E.-Y.; Lee, H.-J.; Kim, Y.; Park, Y.; Cha, Y.-S. Research trend in traditional fermented foods focused on health functional evaluation. J. Korean Soc. Food Sci. Nutr. 2018, 47, 373–386. [Google Scholar] [CrossRef]
- Kim, S.-H.; Chung, K.R.; Yang, H.-J.; Kwon, D.Y. Sunchang gochujang (Korean red chili paste): The unfolding of authenticity. J. Ethn. Foods 2016, 3, 201–208. [Google Scholar] [CrossRef]
- Lee, H. The history of Korean jangs. Food Sci. Ind. 2016, 49, 62–96. [Google Scholar]
- Lee, C.H.; Kwon, T.W. Soybean; Korea University Press: Seoul, Republic of Korea, 2005; pp. 3–44. [Google Scholar]
- Jang, D.-J.; Chung, K.R.; Yang, H.J.; Kim, K.-S.; Kwon, D.Y. Discussion on the origin of kimchi, representative of Korean unique fermented vegetables. J. Ethn. Foods 2015, 2, 126–136. [Google Scholar] [CrossRef]
- Jang, J.H. Study on Korean History of Traditional Fermented Food; Soohaksa: Seoul, Republic of Korea, 1989; pp. 184–205. [Google Scholar]
- Lee, C.H. Korean Food and Food Ways; Springer: Berlin/Heidelberg, Germany, 2021; pp. 151–152. [Google Scholar]
- Korea Jang Cooperation; Ministry of Agriculture, Food and Rural Affairs. Overview of Korean Jang (Fermented Soybean Products) Manufacturing. In Korean Food Systems; Shin, D.H., Kwon, D.Y., Nam, Y.G., Jung, D.Y., Eds.; Korea Jang Cooperation: Seoul, Republic of Korea, 2022. [Google Scholar]
- Jung, S.J.; Shin, D.H. Gochujang, a Korean traditional fermented soybean product: History, preparation and functionality. J. Ethn. Food 2024, 11, 43. [Google Scholar] [CrossRef]
- Yang, J.-A.; Kim, J.Y.; Shin, E.C.; Lee, Y.; Park, S.-S. Trends in quality characteristics changes of traditional soybean fermented foods by supplementary ingredients addition. J. Korean Soc. Food Sci. Nutr. 2023, 52, 113–137. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, D.H.; Choi, W.; Im, D.G.; Im, M.S. Studies on taste component traditional Gochujang. Korean J. Food Sci. Technol. 1996, 28, 152–156. [Google Scholar]
- Lee, R.; Ha, G.; Jeong, H.J.; Jeong, D.Y.; Yang, H.J. Metagenomic analysis of Jang using next-generation sequencing: A comparative microbial study of Korean traditional fermented soybean foods. J. Life Sci. 2024, 34, 254–263. [Google Scholar]
- Gil, N.-Y.; Song, J.; Eom, J.S.; Park, S.-Y.; Choi, H.-S. Changes of physicochemical properties of Cheonggukjang prepared with various soybean cultivars and Bacillus subtilis HJ18-9. Korean J. Food Preserv. 2016, 23, 811–818. [Google Scholar] [CrossRef]
- Oh, S. Lactobacillus acidophilus as a probiotics. J. Dairy Sci. Biotechnol. 2019, 37, 155–166. [Google Scholar]
- Jang, S.J.; Kim, Y.J.; Park, J.M.; Park, Y.S. Analysis of microflora in gochujang, Korean traditional fermented food. Food Sci. Biotechnol. 2011, 20, 1435–1440. [Google Scholar] [CrossRef]
- Seo, M.Y.; Kim, S.H.; Lee, C.H.; Cha, S.K. Fibrinolytic, immunostimulating, and cytotoxic activities of microbial strains isolated from Kochujang. Korean J. Food Sci. Technol. 2007, 39, 315–322. [Google Scholar]
- Ha, G.; Yang, H.J.; Ryu, M.S.; Jeong, S.J.; Jeong, D.Y.; Park, S. Bacterial community and anti-cerebrovascular disease-related Bacillus species isolated from traditionally made kochujang from different provinces of Korea. Microorganisms 2021, 9, 2238. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jeong, J.O.; Cho, S.H.; Jeong, D.Y.; Uhm, T.B. Antimicrobial and biogenic amine-degrading activity of Bacillus licheniformis SCK B11 isolated from traditionally fermented red pepper paste. Korean J. Microbiol. 2012, 48, 163–170. [Google Scholar] [CrossRef]
- Jeon, S.; Heo, J.; Uhm, T.B. Complete genome sequence of Bacillus subtilis BS16045 isolated from Gochujang. Korean J. Microbiol. 2017, 53, 55–57. [Google Scholar] [CrossRef]
- Park, Y.K.; Lee, J.H.; Mah, J.-H. Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chem. 2019, 278, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Kim, K.A.; Yang, H.J.; Jeong, S.J.; Han, A.; Cha, Y.S. Comparison of the laxative effects of Korean Gochujang containing different microbiota on loperamide-induced constipation in ICR mice. Food Funct. 2023, 14, 7615–7630. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Edward, O.C.; Seo, E.B.; Mun, E.G.; Jeong, S.J.; Ha, G.; Han, A.; Cha, Y.S. Gochujang ameliorates hepatic inflammation by improving dysbiosis of gut microbiota in high-fat diet-induced obese mice. Microorganisms 2023, 11, 911. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef] [PubMed]
- Byeon, J.Y.; Choi, I.S. Comparison of physicochemical characteristics and antioxidant activities in commercial Gochujang products. Korean J. Hum. Ecol. 2018, 27, 223–232. [Google Scholar] [CrossRef]
- Jeon, J.; Jang, Y.; Choung, M.G. Sugar and isoflavone contents of traditional Korean soybean fermented foods. J. Korean Soc. Food Sci. Nutr. 2023, 52, 72–81. [Google Scholar] [CrossRef]
- Sun, J.M.; Sun, B.L.; Han, F.X.; Yan, S.R.; Yang, H.; Kikuchi, A. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric. Sci. China 2011, 10, 70–77. [Google Scholar] [CrossRef]
- Izumi, T.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kikuchi, M.; Piskula, M.K.; Kubota, Y. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Larkin, T.; Price, W.E.; Astheimer, L. The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr. 2008, 48, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Lee, Y.J.; Yoon, S. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J. Food Cult. 2007, 22, 353–358. [Google Scholar]
- Oh, H.J.; Kim, C.S. Antioxidant and nitrite scavenging ability of fermented soybean foods (Chungkukjang, Doenjang). J. Korean Soc. Food Sci. Nutr. 2007, 36, 1503–1510. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.S.; Park, S.I.; Kim, J.S.; Sohn, H.Y. Comparison of antioxidant, antidiabetic, and antithrombotic activities of native Korean and improved pepper varieties. J. Life Sci. 2024, 34, 385–392. [Google Scholar]
- Boo, C.G.; Cho, S.M.; Jeong, H.Y.; Yoon, S.J.; Hong, S.J.; Heo, S.U.; Shin, E.C. Investigation of water-soluble vitamin (B1, B2, B3, and B7) contents in beverages and confectionery. J. Korean Soc. Food Sci. Nutr. 2021, 50, 551–561. [Google Scholar] [CrossRef]
- Jang, Y.; Jeon, J.; Lee, S.H.; Choi, Y.M.; Choung, M.G. Evaluation of the thiamine, riboflavin, and niacin contents in fermented soybean processed foods in various Korean provinces. J. Korean Soc. Food Sci. Nutr. 2022, 51, 688–696. [Google Scholar] [CrossRef]
- Pyeon, J.; Kim, D.; Choi, Y.; Kim, Y. Comparison of the biotin contents of traditionally and commercially fermented soybean products. J. Korean Soc. Food Sci. Nutr. 2023, 52, 268–275. [Google Scholar] [CrossRef]
- Park, Y.E.; Gwak, Y.J.; Kim, J.; Guan, Y.; Hong, W.H.; Park, S.J.; Choi, Y.; Chun, J. Regional variation of vitamin B12 content in korea traditional fermented soy foods. J. Korean Soc. Food Sci. Nutr. 2022, 51, 64–70. [Google Scholar] [CrossRef]
- Kwak, C.S.; Hwang, J.Y.; Watanabe, F.; Park, S.C. Vitamin B12 contents in some Korean fermented foods and edible seaweeds. Korean J. Nutr. 2008, 41, 439–447. [Google Scholar]
- Liem, I.T.; Steinkraus, K.H.; Cronk, T.C. Production of vitamin B-12 in tempeh, a fermented soybean food. Appl. Environ. Microbiol. 1977, 34, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, L.; Averianova, L.; Marchenok, M.; Son, O.; Tekutyeva, L. Microbial and genetic resources for cobalamin (vitamin B12) biosynthesis: From ecosystems to industrial biotechnology. Int. J. Mol. Sci. 2021, 22, 4522. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.B.; Oh, S.M.; Han, A. Gochujang suppresses cell survival and changes reactive oxygen species metabolism in colorectal cancer cells. Food Nutr. Res. 2024, 68, 10–29219. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Lee, H.S. A physico-chemical properties and sensory evaluation of farm house Gochujang in Gangwon-do. Food Serv. Ind. J. 2023, 19, 179–201. [Google Scholar]
- Kim, S.H.; Kim, H.J.; Shin, H.S. Identification and quantification of antitumor thioproline and methylthioproline in Korean traditional foods by a liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014, 100, 58–63. [Google Scholar] [CrossRef]
- Ha, J.; Han, K.J.; Kim, K.J.; Jeong, S.W. Gas chromatographic analysis of capsaicin in Gochujang. J. AOAC Int. 2008, 91, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Ham, H.M.; Sung, M.S.; Kim, Y.H.; Choi, Y.M.; Jeong, H.S.; Lee, J.S. Determination of capsaicinoids in selected commercial pepper powders and pepper-containing products using HPLC and method validation. J. Korean Soc. Food Sci. Nutr. 2012, 41, 870–874. [Google Scholar] [CrossRef]
- Barbero, G.F.; Liazid, A.; Azaroual, L.; Palma, M.; Barroso, C.G. Capsaicinoid contents in peppers and pepper-related spicy foods. Int. J. Food Prop. 2016, 19, 485–493. [Google Scholar] [CrossRef]
- CODEX STAN 294R-2009; Regional Standard for Gochujang (Asia). Codex Alimentarius: Rome, Italy, 2009.
- Reyes-Escogido, M.D.L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef]
- Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.D.; Caruntu, A.; Scheau, A.E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. The effects of capsaicin on gastrointestinal cancers. Molecules 2020, 26, 94. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.H.; Jason Chan, K.K.; Chan, W. Thioproline serves as an efficient antioxidant protecting human cells from oxidative stress and improves cell viability. Chem. Res. Toxicol. 2020, 33, 1815–1821. [Google Scholar] [CrossRef]
- Suo, M.; Mukaisho, K.I.; Shimomura, A.; Sugihara, H.; Hattori, T. Thioproline prevents carcinogenesis in the remnant stomach induced by duodenal reflux. Cancer Lett. 2006, 237, 256–262. [Google Scholar] [CrossRef]
- Kim, J.Y.; Liu, F.F.; Lim, Y.I.; Park, K.Y. Fermentation process increased antimutagenic and in vitro anticancer effects during Kochujang manufacturing. Korean J. Food Preserv. 2014, 21, 878–884. [Google Scholar] [CrossRef]
- Kim, S.O.; Kong, C.S.; Kil, J.H.; Kim, J.Y.; Han, M.S.; Park, K.Y. Fermented wheat grain products and Kochujang inhibit the growth of AGS human gastric adenocarcinoma cells. Prev. Nutr. Food Sci. 2005, 10, 349–352. [Google Scholar] [CrossRef]
- Kim, S.J.; Jung, K.O. In vitro anticancer effect of Kochujang (Korean red pepper soybean paste) and its ingredients in AGS human gastric cancer cells. J. Korean Assoc. Cancer Prev. 2004, 9, 42–48. [Google Scholar]
- Lee, H.Y.; Bak, S.S.; Moon, S.H.; Kim, S.H.; Ryu, H.K.; Park, K.Y. Fermentative characteristics, and antimutagenic and anticancer effects of Soonchang traditional Kochujangs. Cancer Prev. Res. 2008, 13, 316–323. [Google Scholar]
- Jung, K.O.; Kim, S.J.; Yoon, S.K.; Park, K.Y. Antimutagenic effect of kochujang (Korean red pepper soybean paste) and kochujang ingredients in the Ames test. J. Korean Assoc. Cancer Prev. 2000, 5, 209–216. [Google Scholar]
- Messina, M.J.; Persky, V.; Setchell, K.D.R.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Kim, J.; Ryu, M.S.; Jeong, D.Y.; Yang, H.J. Review of physiological compounds and health benefits of soybean paste (doenjang): Exploring its bioactive components. J. Ethn. Food 2024, 11, 30. [Google Scholar] [CrossRef]
- Hervert-Hernandez, D.; Sayago-Ayerdi, S.G.; Goni, I.S. Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. J. Agric. Food Chem. 2010, 58, 3399–3406. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, Y.J.; Park, E.H.; Yi, H.K.; Jo, D.S.; Kim, J.S.; Hwang, P.H. Capsaicin-induced apoptosis and the enhanced anticancer effect of anticancer drugs in cancer cells. Korean J Pediatr. 2008, 51, 307–314. [Google Scholar] [CrossRef]
- Kim, Y.M.; Hwang, J.T.; Kwak, D.W.; Lee, Y.K.; Park, O.J. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann. N. Y. Acad. Sci. 2007, 1095, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.I.; Kim, J.Y.; Kim, U.S.; Baek, S.H. Antioxidant, tyrosinase inhibitory, and anti-proliferative activities of Gochujang added with Cheonggukjang powder made from sword bean. Korean J. Food Sci. Technol. 2013, 45, 221–226. [Google Scholar] [CrossRef]
- Song, H.S.; Kim, Y.M.; Lee, K.T. Antioxidant and anticancer activities of traditional Kochujang added with garlic porridge. J. Life Sci. 2008, 18, 1140–1146. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, K.W.; Yang, H.S.; Cho, Y.S.; Jeong, C.H.; Shim, K.H.; Yee, S.T.; Seo, K.I. Anticancer and immuno-activity of methanol extract from onion Kochujang. Food Sci. Preserv. 2005, 12, 173–178. [Google Scholar]
- Oh, Y.S.; Baek, J.W.; Park, K.Y.; Hwang, J.H.; Lim, S.B. Physicochemical and functional properties of Kochujang with broccoli leaf powder. J. Korean Soc. Food Sci. Nutr. 2013, 42, 675–681. [Google Scholar] [CrossRef]
- Kong, C.S.; Jung, H.K.; Kim, S.O.; Rhee, S.H.; Han, M.S.; Park, K.Y. In vitro anticancer effect of fucoidan and fucoidan-added Kochujang (Korean red pepper soybean paste). Cancer Prev. Res. 2005, 10, 264–269. [Google Scholar]
- Wang, Z.; Cui, S.; Zhang, T.; Wang, W.; Li, J.; Chen, Y.Q.; Zhu, S.L. Akkermansia muciniphila supplementation improves glucose tolerance in intestinal Ffar4 knockout mice during the daily light to dark transition. mSystems 2023, 8, e00573-23. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Elias-Oliveira, J.; Pereira, Í.S.; Pereira, J.A.; Barbosa, S.C.; Machado, M.S.G.; Carlos, D. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 2022, 13, 934695. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Park, Y.M.; Shin, D.Y.; Hwang, H.M.; Jeong, H.; Jeong, S.J.; Yang, H.J.; Ryu, M.S.; Seo, J.W.; Jeong, D.Y.; et al. Gochujang, a traditional Korean fermented food, protects through suppressed inflammatory pathways and histological structure disruption in dextran sodium sulfate (DSS)-induced colitis mice. Heliyon 2024, 10, e27383. [Google Scholar] [CrossRef]
- Liu, B.N.; Liu, X.T.; Liang, Z.H.; Wang, J.H. Gut microbiota in obesity. World J. Gastroenterol. 2021, 27, 383–3850. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Han, A.L.; Jeong, S.-J.; Ryu, M.-S.; Yang, H.-J.; Jeong, D.-Y.; Park, D.-S.; Lee, H.K. Anti-obesity effects of traditional and commercial Kochujang in overweight and obese adults: A randomized controlled trial. Nutrients 2022, 14, 2783. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Song, M.Y.; Chung, S.H. A literature review of nutritional ergogenics for the improvement of exercise performance in the treatment of obesity. J. Orient. Rehabil. Med. 2004, 14, 1–23. [Google Scholar]
- Lee, H.; Song, J.; Chung, S.; Cha, Y.S.; Han, A. Gochujang elicits anti-obesity effects by increasing capsaicin-independent brown adipogenesis and thermogenesis in high-fat diet-induced obese mice. J. Funct. Foods 2023, 111, 105886. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, Y.I. Anti-obesity effect of commercial Kochujang and fermented wheat grain products in Sprague-Dawley rats. Korean J. Food Nutr. 2014, 27, 641–649. [Google Scholar] [CrossRef]
- Rhee, S.H.; Kong, K.R.; Jung, K.O.; Park, K.Y. Decreasing effect of Kochujang on body weight and lipid levels of adipose tissues and serum in rats fed a high-fat diet. J. Korean Soc. Food Sci. Nutr. 2003, 32, 882–886. [Google Scholar]
- Ahn, I.S.; Do, M.S.; Kim, S.O.; Jung, H.S.; Kim, Y.I.; Kim, H.J.; Park, K.Y. Anti-obesity effect of Kochujang (Korean fermented red pepper paste) extract in 3T3-L1 adipocytes. J. Med. Food 2006, 9, 15–21. [Google Scholar] [CrossRef]
- Son, H.K.; Shin, H.W.; Jang, E.S.; Moon, B.S.; Lee, C.H.; Lee, J.J. Gochujang prepared using rice and wheat koji partially alleviates high-fat diet-induced obesity in rats. Food Sci. Nutr. 2020, 8, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Kim, M.J.; Kim, K.S.; Lee, J.E.; Hong, S.P. In vitro antidiabetic and antiobesity activities of traditional Kochujang and Doenjang and their components. Prev. Nutr. Food Sci. 2019, 24, 274–282. [Google Scholar] [CrossRef]
- Son, H.K.; Shin, H.W.; Jang, E.S.; Moon, B.S.; Lee, C.H.; Lee, J.J. Comparison of anti-obesity effects between Gochujangs produced using different Koji products and Tabasco hot sauce in rats fed a high-fat diet. J. Med. Food 2018, 21, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Cha, Y.S.; Park, Y.; Lee, M. PPARγ2 C1431T polymorphism interacts with the anti-obesogenic effects of Kochujang, a Korean fermented, soybean-based red pepper paste, in overweight/obese subjects: A 12-week, double-blind randomized clinical trial. J. Med. Food 2017, 20, 610–617. [Google Scholar] [CrossRef]
- Shin, H.; Jang, E.; Moon, B.; Lee, J.; Lee, D.; Lee, C.; Shin, C. Anti-obesity effects of Gochujang products prepared using rice Koji and soybean Meju in rats. J. Food Sci. Technol. 2016, 53, 1004–1013. [Google Scholar] [CrossRef]
- Cha, Y.S.; Kim, S.R.; Yang, J.A.; Back, H.I.; Kim, M.G.; Jung, S.J.; Song, W.O.; Chae, S.W. Kochujang, fermented soybean-based red pepper paste, decreases visceral fat and improves blood lipid profiles in overweight adults. Nutr. Metab. 2013, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Hong, S.M.; Ahn, I.S.; Kim, Y.S.; Shin, D.W.; Park, S. Kochujang, a Korean fermented red pepper plus soybean paste, improves glucose homeostasis in 90% pancreatectomized diabetic rats. Nutrition 2009, 25, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, C.; Yue, Y.; Yang, H.J.; Ryu, M.S.; Wu, X.; Jeong, D.Y.; Park, S. Fermented red pepper paste (Kochujang) modulates glucose metabolism and gut microbiota in parasympathetic suppression: Network pharmacology and in vivo study. Food Biosci. 2024, 61, 104531. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hamaguchi, M.; Fukui, M. Fermented soybean foods and diabetes. J. Diabetes Investig. 2023, 14, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.S.; Yue, Y.; Li, C.; Yang, H.J.; Zhang, T.; Wu, X.; Jeong, D.Y.; Park, S. Moderate capsaicin-containing kochujang alleviates memory impairment through the gut-brain axis in rats with scopolamine-induced amnesia. Biomed. Pharmacother. 2024, 178, 117091. [Google Scholar] [CrossRef]
- Lim, J.O.; Kim, M.J.; Bae, J.B.; Jeon, C.H.; Han, J.H.; Sim, T.H.; Kim, Y.J. Antidepressant effects of capsaicin in rats with chronic unpredictable mild stress-induced depression. J. Korean Biol. Nurs. Sci. 2023, 25, 43–54. [Google Scholar] [CrossRef]
- Lim, S.I.; Choi, S.Y.; Cho, G.H. Effects of functional ingredients addition on quality characteristics of Kochujang. Korean J. Food Sci. Technol. 2006, 38, 779–784. [Google Scholar]
- Park, J.E.; Han, A.; Mun, E.G.; Cha, Y.S. A traditional Korean fermented food, Gochujang exerts anti-hypertensive effects, regardless of its high salt content by regulating renin-angiotensin-aldosterone system in SD rats. Heliyon 2024, 10, e30451. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.K.; Kim, J.; Ryu, M.S.; Yang, H.-J.; Jeong, D.-Y.; Shin, D.-H. The Health Benefits and Functional Properties of Gochujang: A Comprehensive Review of Fermentation and Bioactive Compounds. Fermentation 2025, 11, 67. https://doi.org/10.3390/fermentation11020067
Park YK, Kim J, Ryu MS, Yang H-J, Jeong D-Y, Shin D-H. The Health Benefits and Functional Properties of Gochujang: A Comprehensive Review of Fermentation and Bioactive Compounds. Fermentation. 2025; 11(2):67. https://doi.org/10.3390/fermentation11020067
Chicago/Turabian StylePark, Young Kyoung, Jinwon Kim, Myeong Seon Ryu, Hee-Jong Yang, Do-Youn Jeong, and Dong-Hwa Shin. 2025. "The Health Benefits and Functional Properties of Gochujang: A Comprehensive Review of Fermentation and Bioactive Compounds" Fermentation 11, no. 2: 67. https://doi.org/10.3390/fermentation11020067
APA StylePark, Y. K., Kim, J., Ryu, M. S., Yang, H.-J., Jeong, D.-Y., & Shin, D.-H. (2025). The Health Benefits and Functional Properties of Gochujang: A Comprehensive Review of Fermentation and Bioactive Compounds. Fermentation, 11(2), 67. https://doi.org/10.3390/fermentation11020067