Fungal Biodegradation of Procyanidin in Submerged Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction and Purification of Procyanidins
2.3. Microorganism
2.4. Growth Medium
2.5. Fermentation Conditions
2.6. Extracellular Extract
2.7. Enzyme Assay in a PC1 Model System
2.8. Analysis of the Biotransformed Products of PC1
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, F.; Zhao, L.; Chen, W.; Lu, Q.; Tang, C.; Wang, C.; Liu, R. Comparison of the inhibitory effects of procyanidins with different structures and their digestion products against acrylamide-induced cytotoxicity in IPEC-J2 cells. J. Funct. Foods 2020, 72, 104073. [Google Scholar] [CrossRef]
- Zineb, O.Y.; Rashwan, A.K.; Karim, N.; Lu, Y.; Tangpong, J.; Chen, W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. Food Rev. Int. 2022, 39, 5255–5278. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. Front. Sustain. Food Syst. 2020, 4, 525810. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, H.M.; Ma, Y.X.; Xue, D. Developments in Extraction, Purification, and Structural Elucidation of Proanthocyanidins (2000–2019). Stud. Nat. Prod. Chem. 2021, 68, 347–391. [Google Scholar] [CrossRef]
- Ochoa, C.; Hernández, M.A.; Bayona, O.L.; Cabeza, I.O.; Candela, A.M. Value-Added By-Products During Dark Fermentation of Agro-Industrial Residual Biomass: Metabolic Pathway Analysis. Waste Biomass Valorization 2021, 12, 5937–5948. [Google Scholar] [CrossRef]
- Buck, N.; Wohlt, D.; Winter, A.R.; Ortner, E. Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules 2021, 26, 3925. [Google Scholar] [CrossRef]
- Bourvellec, L.C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Effect of Tannin Structure. In Encyclopedia of Food Chemistry; Elsevier Science Inc.: Amsterdam, The Netherlands, 2018; Volume 2, pp. 515–521. [Google Scholar]
- Liu, X.; Renard, C.M.G.C.; Rolland-Sabaté, A.; Le Bourvellec, C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll. 2021, 113, 106498. [Google Scholar] [CrossRef]
- Valencia-Hernández, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Chávez-González, M.L.; Martínez-Pérez, A.; Castillo-Olvera, G.; Aguilar, C.N. Kinetic Study of Fungal Growth of Several Tanninolytic Strains Using Coffee Pulp Procyanidins. Fermentation 2022, 8, 17. [Google Scholar] [CrossRef]
- Prigione, V.; Spina, F.; Tigini, V.; Giovando, S.; Varese, G.C. Biotransformation of industrial tannins by filamentous fungi. Appl. Microbiol. Biotechnol. 2018, 102, 10361–10375. [Google Scholar] [CrossRef]
- Roopesh, K.; Guyot, S.; Sabu, A.; Haridas, M.; Isabelle, P.G.; Roussos, S.; Augur, C. Biotransformation of procyanidins by a purified fungal dioxygenase: Identification and characterization of the products using mass spectrometry. Process. Biochem. 2010, 45, 904–913. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Guyot, S.; Aguilar-Zárate, P.; Muñiz-Márquez, D.B.; Contreras-Esquivel, J.C.; Aguilar, C.N. Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chem. 2021, 340, 127830. [Google Scholar] [CrossRef] [PubMed]
- Prigione, V.; Trocini, B.; Spina, F.; Poli, A.; Romanisio, D.; Giovando, S.; Varese, G.C. Fungi from industrial tannins: Potential application in biotransformation and bioremediation of tannery wastewaters. Appl. Microbiol. Biotechnol. 2018, 102, 4203–4216. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Coronel, M.A.; Marnet, N.; Kolli, V.S.K.; Roussos, S.; Guyot, S.; Augur, C. Characterization and Estimation of Proanthocyanidins and Other Phenolics in Coffee Pulp (Coffea arabica) by Thiolysis−High-Performance Liquid Chromatography. J. Agric. Food Chem. 2004, 52, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C.N.; Cruz, M.; Rodriguez, R.; Gutierrez-Sanchez, G.; Ramirez-Coronel, A.; Augur, C. Catechin degradation by several fungal strains isolated from Mexican desert. J. Microbiol. Biotechnol. 2004, 14, 426–429. [Google Scholar]
- Contreras-Domínguez, M.; Guyot, S.; Marnet, N.; Le Petit, J.; Perraud-Gaime, I.; Roussos, S.; Augur, C. Degradation of procyanidins by Aspergillus fumigatus: Identification of a novel aromatic ring cleavage product. Biochimie 2006, 88, 1899–1908. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Guyot, S.; Contreras-Esquivel, J.C.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Separation of Coffee Pulp Bioactive Phenolic Compounds by MPLC Fractionation and Identification by HPLC-ESI-MS. In Modern Green Chemistry and Heterocyclic Compounds; Taylor and Francis: Abingdon, UK, 2020; pp. 217–228. [Google Scholar] [CrossRef]
- Hernández, M.C.; Esquivel, J.C.C.; Lara, F.; Rodríguez, R.; Aguilar, C.N. Isolation and Evaluation of Tannin-degrading Fungal Strains from the Mexican Desert. Z. Naturforschung Sect. C 2005, 60, 844–848. [Google Scholar] [CrossRef]
- Porter, L.J. Condensed tannins. In Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell; Springer: Berlin/Heidelberg, Germany, 1989; pp. 651–690. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Hossain, M.E.; Alam, M.F.; Razib, M.A.; Alam, M.T.; Ahsan, M.S. Optimization of Submerged Steady-State Fermentation Process for Glucose Oxidase Production by Aspergillus niger Isolated from Local Environment. J. BioScience Biotechnol. 2020, 9, 27–32. [Google Scholar]
- Behailu, A.; Abebe, G. Isolation, production and characterization of amylase enzyme using the isolate Aspergillus niger FAB-211. Int. J. Biotechnol. Mol. Biol. Res. 2018, 9, 7–14. [Google Scholar] [CrossRef]
- Muzaffar, H.S.; Mohit, N.; Kumar, S.L.; Garima, A. Kinetic Study of Dyes Degradation by Aspergillus Niger in Submerged Fermentation. Res. J. Chem. Environ. 2020, 24, 16–24. [Google Scholar]
- Gomathi, D.; Muthulakshmi, C.; Kumar, D.G.; Ravikumar, G.; Kalaiselvi, M.; Uma, C. Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac. J. Trop. Biomed. 2012, 2, S67–S73. [Google Scholar] [CrossRef]
- Khan, M.F.; Murphy, C.D. Cytochrome P450 5208A3 is a promiscuous xenobiotic biotransforming enzyme in Cunninghamella elegans. Enzym. Microb. Technol. 2022, 161, 110102. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, J.; Du, G.; Chen, J.; Takahashi, S.; Liu, S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 2020, 44, 107630. [Google Scholar] [CrossRef]
- Santos, G.B.; Filho, Á.d.S.F.; Rodrigues, J.R.d.S.; de Souza, R.R. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. J. Environ. Manag. 2022, 305, 114431. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, R.J.; Dilokpimol, A.; Peng, M.; Visser, J.; Mäkelä, M.R.; Hildén, K.S.; De Vries, R.P. Discovery of Novel P-Hydroxybenzoate- m-Hydroxylase, Protocatechuate 3,4 Ring-Cleavage Dioxygenase, and Hydroxyquinol 1,2 Ring-Cleavage Dioxygenase from the Filamentous Fungus Aspergillus niger. ACS Sustain. Chem. Eng. 2019, 7, 19081–19089. [Google Scholar] [CrossRef]
- Semana, P.; Powlowski, J. Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger. Appl. Environ. Microbiol. 2019, 85, e01786-19. [Google Scholar] [CrossRef]
- Hu, Y.; Du, C.; Pensupa, N.; Lin, C.S.K. Optimisation of fungal cellulase production from textile waste using experimental design. Process. Saf. Environ. Prot. 2018, 118, 133–142. [Google Scholar] [CrossRef]
- Ire, F.S.; Chima, I.J.; Ezebuiro, V. Enhanced xylanase production from UV-mutated Aspergillus niger grown on corn cob and sawdust. Biocatal. Agric. Biotechnol. 2021, 31, 101869. [Google Scholar] [CrossRef]
- Wong-Pax, J.E. Fungal Biotransformation of Procyanidns from Coffee Pulp. Ph.D. Thesis, Food Science and Technology Program, Food Research Department, School of Chemistry, Universidad Autónoma de Coahula, Saltillo, Mexico, 2016. [Google Scholar]
- Toro-Uribe, S.; Herrero, M.; Decker, E.A.; López-Giraldo, L.J.; Ibáñez, E. Preparative Separation of Procyanidins from Cocoa Polyphenolic Extract: Comparative Study of Different Fractionation Techniques. Molecules 2020, 25, 2842. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Jiang, J.; Duan, W.; Fan, P.; Li, S.; Wang, L. Flavan-3-ols in Vitis seeds: Their extraction and analysis by HPLC-ESI-MS/MS. Food Res. Int. 2021, 139, 109911. [Google Scholar] [CrossRef]
- Yuzuak, S.; Ballington, J.; Xie, D.-Y. HPLC-qTOF-MS/MS-Based Profiling of Flavan-3-ols and Dimeric Proanthocyanidins in Berries of Two Muscadine Grape Hybrids FLH 13-11 and FLH 17-66. Metabolites 2018, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Cangeloni, L.; Bonechi, C.; Leone, G.; Consumi, M.; Andreassi, M.; Magnani, A.; Rossi, C.; Tamasi, G. Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. Foods 2022, 11, 2495. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.J.; Santos, J.A.; Pinto, J.C.; Llorent-Martínez, E.J.; Castilho, P.C.; de Carvalho, L.A.B.; Marques, M.P.M.; Barroca, M.J.; da Silva, A.M.; da Costa, R.M. Spectrochemical analysis of seasonal and sexual variation of antioxidants in Corema album (L.) D. Don leaf extracts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122816. [Google Scholar] [CrossRef] [PubMed]
- ReFaey, K.; Tripathi, S.; Grewal, S.S.; Bhargav, A.G.; Quinones, D.J.; Chaichana, K.L.; Antwi, S.O.; Cooper, L.T.; Meyer, F.B.; Dronca, R.S.; et al. Cancer Mortality Rates Increasing vs. Cardiovascular Disease Mortality Decreasing in the World: Future Implications. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 645–653. [Google Scholar] [CrossRef]
- Carriere, P.P.; Kapur, N.; Mir, H.; Ward, A.B.; Singh, S. Cinnamtannin B-1 inhibits cell survival molecules and induces apoptosis in colon cancer. Int. J. Oncol. 2018, 53, 1442–1454. [Google Scholar] [CrossRef]
- Ding, Y.; Li, H.; Cao, S.; Yu, Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol. Appl. Pharmacol. 2024, 490, 117036. [Google Scholar] [CrossRef]
- Thomas, P.; Dong, J. (-)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2021, 211, 105906. [Google Scholar] [CrossRef]
- Khan, M.F.; Hof, C.; Niemcová, P.; Murphy, C.D. Recent advances in fungal xenobiotic metabolism: Enzymes and applications. World J. Microbiol. Biotechnol. 2023, 39, 296. [Google Scholar] [CrossRef]
- Dave, S.; Das, J. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: Challenges and future prospects. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Amsterdam: Elsevier, 2021; pp. 325–346. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Feng, Q.; Yan, H. Extracellular Differential Proteome Analysis of Substrates of Different Lignin Model Compounds Degraded by Aspergillus fumigatus G-13. J. Environ. Eng. Landsc. Manag. 2020, 28, 137–147. [Google Scholar] [CrossRef]
- Li, J.; Feng, Q.; Du, X.; Yan, H. Quantitative Proteomics Analysis of Natural Lignocelluloses Degraded by Aspergillus fumigatus G-13 Based on iTRAQ. Pol. J. Environ. Stud. 2020, 30, 189–200. [Google Scholar] [CrossRef]
- Stoyanova, K.; Gerginova, M.; Dincheva, I.; Peneva, N.; Alexieva, Z. Biodegradation of Naphthalene and Anthracene by Aspergillus glaucus Strain Isolated from Antarctic Soil. Processes 2022, 10, 873. [Google Scholar] [CrossRef]
- Arora, P.K.; Kumar, M.; Chauhan, A.; Raghava, G.P.; Jain, R.K. OxDBase: A database of oxygenases involved in biodegradation. BMC Res. Notes 2009, 2, 67. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Ma, Z.; Kitts, D.D. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chem. 2018, 249, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Li, Y.; Chen, X.; Song, H.; Zhao, C.-X. Encapsulation of enzymes in food industry using spray drying: Recent advances and process scale-ups. Crit. Rev. Food Sci. Nutr. 2024, 64, 7941–7958. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, S.; Guo, J.; Shi, R.; Yu, J.; Li, K.; Li, N.; Zhang, Z.; Chen, Y. Green and Scalable Fabrication of High-Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angew. Chem. Int. Ed. 2022, 61, e202208744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Hernández, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Prado-Barragan, A.; Chávez-González, M.L.; Aguilar, C.N. Fungal Biodegradation of Procyanidin in Submerged Fermentation. Fermentation 2025, 11, 75. https://doi.org/10.3390/fermentation11020075
Valencia-Hernández LJ, Wong-Paz JE, Ascacio-Valdés JA, Prado-Barragan A, Chávez-González ML, Aguilar CN. Fungal Biodegradation of Procyanidin in Submerged Fermentation. Fermentation. 2025; 11(2):75. https://doi.org/10.3390/fermentation11020075
Chicago/Turabian StyleValencia-Hernández, Leidy Johana, Jorge E. Wong-Paz, J. Alberto Ascacio-Valdés, Arely Prado-Barragan, Mónica L. Chávez-González, and Cristóbal N. Aguilar. 2025. "Fungal Biodegradation of Procyanidin in Submerged Fermentation" Fermentation 11, no. 2: 75. https://doi.org/10.3390/fermentation11020075
APA StyleValencia-Hernández, L. J., Wong-Paz, J. E., Ascacio-Valdés, J. A., Prado-Barragan, A., Chávez-González, M. L., & Aguilar, C. N. (2025). Fungal Biodegradation of Procyanidin in Submerged Fermentation. Fermentation, 11(2), 75. https://doi.org/10.3390/fermentation11020075