Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma
Abstract
:1. Introduction
2. Materials and Method
2.1. Yeast Strains
2.2. Juice Composition
2.3. Microvinifications
2.4. HPLC Analyses
2.5. Wine Composition
2.6. Statistical Analysis
3. Results
3.1. Fermentation Kinetics
3.2. Production of Volatile Compounds
4. Discussion
4.1. Fermentation Parameters
4.2. Hydrogen Sulfide Production
4.3. Fermentative Aroma Compound Production
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, T.J.; Divol, B.; Setati, M.E. Lachancea yeast species: Origin, biochemical characteristics and oenological significance. Food Res. Int. 2019, 119, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Benito, A.; Calderón, F.; Benito, S. The Influence of Non-Saccharomyces Species on Wine Fermentation Quality Parameters. Fermentation 2019, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Viana, F.; Gil, J.V.; Genovés, S.; Vallés, S.; Manzanares, P. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol. 2008, 25, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Zott, K.; Thibon, C.; Bely, M.; Lonvaud-Funel, A.; Dubourdieu, D.; Masneuf-Pomarede, I. The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. Int. J. Food Microbiol. 2011, 151, 210–215. [Google Scholar] [CrossRef]
- Escribano, R.; González-Arenzana, L.; Garijo, P.; Berlanas, C.; López-Alfaro, I.; López, R.; Gutiérrez, A.R.; Santamaría, P. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J. Food Sci. Technol. 2017, 54, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- González, B.; Vázquez, J.; Morcillo-Parra, M.Á.; Mas, A.; Torija, M.J.; Beltran, G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol. 2018, 74, 64–74. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on varietal aromas during wine making: A review of the impact of varietal aromas on the flavor of wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Bely, M.; Stoeckle, P.; Masneuf-Pomarède, I.; Dubourdieu, D. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int. J. Food Microbiol. 2008, 122, 312–320. [Google Scholar] [CrossRef]
- Benito, A.; Calderón, F.; Benito, S. Combined use of S. pombe and L. thermotolerans in winemaking. Beneficial effects determined through the study of wines’ analytical characteristics. Molecules 2016, 21, 1744. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D. Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiol. 2014, 43, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Albertin, W.; Chasseriaud, L.; Comte, G.; Panfili, A.; Delcamp, A.; Salin, F.; Marullo, P.; Bely, M. Winemaking and bioprocesses strongly shaped the genetic diversity of the ubiquitous yeast Torulaspora delbrueckii. PLoS ONE 2014, 9, e94246. [Google Scholar] [CrossRef] [PubMed]
- Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 3081–3094. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.; Velázquez, R. The yeast Torulaspora delbrueckii: An interesting but difficult-to-use tool for winemaking. Fermentation 2018, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat. Food Nutr. Agric. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Renault, P.; Miot-Sertier, C.; Marullo, P.; Hernández-Orte, P.; Lagarrigue, L.; Lonvaud-Funel, A.; Bely, M. Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. Int. J. Food Microbiol. 2009, 134, 201–210. [Google Scholar] [CrossRef]
- van Breda, V.; Jolly, N.; van Wyk, J. Characterisation of commercial and natural Torulaspora delbrueckii wine yeast strains. Int. J. Food Microbiol. 2013, 163, 80–88. [Google Scholar] [CrossRef]
- Escribano-Viana, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non-Saccharomyces/Saccharomyces yeasts. Food Res. Int. 2018, 112, 17–24. [Google Scholar] [CrossRef]
- Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 6775–6790. [Google Scholar] [CrossRef] [Green Version]
- Belda, I.; Navascués, E.; Marquina, D.; Santos, A.; Calderon, F.; Benito, S. Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl. Microbiol. Biotechnol. 2015, 99, 1911–1922. [Google Scholar] [CrossRef]
- du Plessis, H.; du Toit, M.; Nieuwoudt, H.; van der Rijst, M.; Kidd, M.; Jolly, N. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines. Fermentation 2017, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Apolinar-Valiente, R.; Williams, P.; Esteve-Zarzoso, B.; Arroyo, T.; Crespo, J.; Doco, T. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 Native Yeasts from D.O. “vinos de Madrid.”. J. Agric. Food Chem. 2017, 65, 6656–6664. [Google Scholar]
- Ciani, M.; Maccarelli, F. Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J. Microbiol. Biotechnol. 1998, 14, 199–203. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Benito, S.; Santos, A. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int. J. Food Microbiol. 2017, 257, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Plata, C.; Millán, C.; Mauricio, J.C.; Ortega, J.M. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.C.; Bely, M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- King, A.; Dickinson, J.R. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 2000, 16, 499–506. [Google Scholar] [CrossRef]
- Jenko, M.; Čuš, F. The Influence of Yeast Strains on the Composition and Sensory Quality of Gewürztraminer Wine. Food Technol. Biotechnol. 2013, 51, 547–553. [Google Scholar]
- Roncoroni, M.; Santiago, M.; Hooks, D.O.; Moroney, S.; Harsch, M.J.; Lee, S.A.; Richards, K.D.; Nicolau, L.; Gardner, R.C. The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiol. 2011, 28, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Renault, P.; Coulon, J.; Moine, V.; Thibon, C.; Bely, M. Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains. Front. Microbiol. 2016, 7, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, S.; Hofmann, T.; Laier, M.; Lochbühler, B.; Schüttler, A.; Ebert, K.; Fritsch, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Dutraive, O.; Benito, S.; Fritsch, S.; Beisert, B.; Patz, C.-D.; Rauhut, D. Effect of Sequential Inoculation with Non-Saccharomyces and Saccharomyces Yeasts on Riesling Wine Chemical Composition. Fermentation 2019, 5, 79. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Gerbi, V.; Redoglia, M. A Rapid HPLC Method for Separation and Determination of Major Organic Acids in Grape Musts and Wines. Am. J. Enol. Vitic. 1987, 38, 151–155. [Google Scholar]
- Irmler, S.; Schäfer, H.; Beisert, B.; Rauhut, D.; Berthoud, H. Identification and characterization of a strain-dependent cystathionine β/γ-lyase in Lactobacillus casei potentially involved in cysteine biosynthesis. FEMS Microbiol. Lett. 2009, 295, 67–76. [Google Scholar] [CrossRef]
- Rapp, A.; Yavas, I.; Hastrich, H. Easy and Fast Enrichment (“Kaltronmethod”) and Quantitative Determination of Wine Volatiles with Capillary-Gaschromatography. Dtsch. Lebensm. Rundsch. 1994, 90, 171–174. [Google Scholar]
- Gobert, A.; Tourdot-Maréchal, R.; Morge, C.; Sparrow, C.; Liu, Y.; Quintanilla-Casas, B.; Vichi, S.; Alexandre, H. Non-Saccharomyces Yeasts nitrogen source preferences: Impact on sequential fermentation and wine volatile compounds profile. Front. Microbiol. 2017, 8, 2175. [Google Scholar] [CrossRef] [Green Version]
- Ciani, M.; Morales, P.; Comitini, F.; Tronchoni, J.; Canonico, L.; Curiel, J.A.; Oro, L.; Rodrigues, A.J.; Gonzalez, R. Non-conventional yeast species for lowering ethanol content of wines. Front. Microbiol. 2016, 7, 642. [Google Scholar] [CrossRef] [Green Version]
- Pascual, O.; Pons-Mercadé, P.; Gombau, J.; Ortiz-Julien, A.; Heras, J.M.; Fort, F.; Canals, J.M.; Zamora, F. Study of the effectiveness of a strain of Saccharomyces cerevisiae selected for the production of wines with higher acidity and lower alcoholic strength. BIO Web Conf. 2017, 9, 02002. [Google Scholar] [CrossRef] [Green Version]
- Taillandier, P.; Lai, Q.P.; Julien-Ortiz, A.; Brandam, C. Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: Influence of inoculation and nitrogen content. World J. Microbiol. Biotechnol. 2014, 30, 1959–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.J.; Raimbourg, T.; Gonzalez, R.; Morales, P. Environmental factors influencing the efficacy of different yeast strains for alcohol level reduction in wine by respiration. LWT Food Sci. Technol. 2016, 65, 1038–1043. [Google Scholar] [CrossRef]
- Ciani, M.; Beco, L.; Comitini, F. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int. J. Food Microbiol. 2006, 108, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, P.P.; Jolly, N.P.; Paulsen, V.; Du Plessis, H.W.; Van Der Rijst, M. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Int. J. Food Microbiol. 2017, 257, 232–237. [Google Scholar] [CrossRef]
- Benito, S. The impacts of Schizosaccharomyces on winemaking. Appl. Microbiol. Biotechnol. 2019, 257, 232–237. [Google Scholar] [CrossRef]
- du Plessis, H.W.; du Toit, M.; Hoff, J.W.; Hart, R.S.; Ndimba, B.K.; Jolly, N.P. Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. S. Afr. J. Enol. Vitic. 2017, 38, 46–63. [Google Scholar] [CrossRef]
- Chen, D.; Yap, Z.Y.; Liu, S.Q. Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. Int. J. Food Microbiol. 2015, 206, 45–50. [Google Scholar] [CrossRef]
- Mestres, M.; Busto, O.; Guasch, J. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A 2000, 881, 569–581. [Google Scholar] [CrossRef]
- Ugliano, M.; Kolouchova, R.; Henschke, P.A. Occurrence of hydrogen sulfide in wine and in fermentation: Influence of yeast strain and supplementation of yeast available nitrogen. J. Ind. Microbiol. Biotechnol. 2011, 38, 423–429. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Mendes-Faia, A.; Leão, C. Survey of hydrogen sulphide production by wine yeasts. J. Food Prot. 2002, 65, 1033–1037. [Google Scholar] [CrossRef]
- Rauhut, D. Usage and formation of sulphur compounds. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319600215. [Google Scholar]
- Sutherland, C.M.; Henschke, P.A.; Langridge, P.; De Barros Lopes, M. Subunit and cofactor binding of Saccharomyces cerevisiae sulfite reductase—Towards developing wine yeast with lowered ability to produce hydrogen sulfide. Aust. J. Grape Wine Res. 2003, 9, 186–193. [Google Scholar] [CrossRef]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl. Environ. Microbiol. 1995, 61, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes-Ferreira, A.; Barbosa, C.; Falco, V.; Leão, C.; Mendes-Faia, A. The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J. Ind. Microbiol. Biotechnol. 2009, 36, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Fedrizzi, B.; Siebert, T.; Travis, B.; Magno, F.; Versini, G.; Henschke, P.A. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in Shiraz fermentation and wine. J. Agric. Food Chem. 2009, 57, 4948–4955. [Google Scholar] [CrossRef] [PubMed]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Determination of sulphite reductase activity and its response to assimilable nitrogen status in a commercial Saccharomyces cerevisiae wine yeast. J. Appl. Bacteriol. 1996, 81, 329–336. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 2011, 61, 25–32. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Ebeler, S.E. Analytical chemistry: Unlocking the secrets of wine flavor. Food Rev. Int. 2001, 17, 45–64. [Google Scholar] [CrossRef]
- Ruiz, J.; Belda, I.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Santos, A.; Benito, S. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef] [Green Version]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef]
- Beltran, G.; Esteve-Zarzoso, B.; Rozès, N.; Mas, A.; Guillamón, J.M. Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J. Agric. Food Chem. 2005, 53, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Carrau, F.M.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.A.; Dellacassa, E. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrea, D.; Varela, C.; Ugliano, M.; Ancin-Azpilicueta, C.; Leigh Francis, I.; Henschke, P.A. Comparison of inorganic and organic nitrogen supplementation of grape juice—Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem. 2011, 127, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Siebert, T.E.; Varela, C.; Pretorius, I.S.; Henschke, P.A. Effect of ammonium nitrogen supplementation of grape juice on wine volatiles and non-volatiles composition of the aromatic grape variety Albariño. Food Chem. 2012, 133, 124–131. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef]
- Vilanova, M.; Ugliano, M.; Varela, C.; Siebert, T.; Pretorius, I.S.; Henschke, P.A. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 2007, 77, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT Food Sci. Technol. 2008, 41, 501–510. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [Green Version]
Parameters | Yeast Strains and Nutrient Conditions | |||||
---|---|---|---|---|---|---|
Prelude | Prelude + Nutrients | Biodiva | Biodiva + Nutrients | AlphaTd | Alpha Td + Nutrients | |
Residual glucose (g/L) | 22.28 ± 4.62 a | 9.49 ± 0.81 c | 14.89 ± 1.84 b | 5.29 ± 0.66 d | 3.10 ± 0.35 e | n.q. |
Residual fructose (g/L) | 44.87 ± 5.11 a | 24.05 ± 1.29 b | 36.91 ± 4.05 a | 16.32 ± 0.96 c | 14.39 ± 2.54 c | 2.27 ± 0.29 d |
Ethanol (g/L) | 40.60 ± 5.11 d | 57.92 ± 0.99 c | 48.35 ± 2.95 d | 63.22 ± 0.74 b | 65.57 ± 1.26 b | 72.68 ± 0.09 a |
Ethanol (%) | 5.1 ± 0.65 | 7.3 ± 0.13 | 6.1 ± 0.37 | 8.0 ± 0.09 | 8.3 ± 0.16 | 9.2 ± 0.01 |
Ethanol yield | 0.40 ± 0.01 d | 0.43 ± 0.00 c | 0.41 ± 0.00 d | 0.43 ± 0.00 c | 0.43 ± 0.00 b | 0.44 ± 0.00 a |
Acetic acid (g/L) | n.q. | n.q. | n.q. | n.q. | n.q. | n.q. |
Malic acid (g/L) | 1.85 ± 0.02 b | 1.78 ± 0.01 cd | 1.95 ± 0.01 a | 1.82 ± 0.01 bc | 1.75 ± 0.06 d | 1.60 ± 0.03 e |
Lactic acid (g/L) | n.q. | n.q. | n.q. | n.q. | n.q. | n.q. |
Citric acid (g/L) | 0.11 ± 0.01 a | 0.10 ± 0.00 a | 0.11 ± 0.01 a | 0.10 ± 0.00 a | 0.11 ± 0.01 a | 0.11 ± 0.01 a |
Tartaric acid (g/L) | 2.20 ± 0.00 a | 2.22 ± 0.01 a | 2.21 ± 0.00 a | 2.24 ± 0.02 a | 2.22 ± 0.00 a | 2.24 ± 0.02 a |
Parameters | Yeast Strains and Nutrient Conditions | |||||
---|---|---|---|---|---|---|
Prelude | Prelude + Nutrients | Biodiva | Biodiva + Nutrients | AlphaTd | Alpha Td + Nutrients | |
H2S (µg/L) | n.q. | 5.3 ± 0.61 c | n.q. | 5.5 ± 0.49 bc | 7.8 ± 1.93 b | 12.7 ± 1.72 a |
Higher alcohols | ||||||
Isobutanol (mg/L) | 8.7 ± 0.58 d | 14.0 ± 1.0 b | 7.0 ± 1.00 d | 12.0 ± 0.00 c | 15.7 ± 1.53 b | 18.7 ± 0.58 a |
2-Phenyl-ethanol (mg/L) | 8.3 ± 0.58 d | 13.0 ± 0.00 b | 10.7 ± 0.58 c | 16.0 ± 1.73 a | 12.0 ± 1.00 bc | 16.7 ± 0.58 a |
Isoamyl alcohol (mg/L) | 32.0 ± 2.56 d | 63.3 ± 4.16 b | 31.7 ± 3.51 d | 66.7 ± 0.58 b | 53.3 ± 4.51 c | 87.7 ± 3.51 a |
Active amyl alcohol (mg/L) | 3.3 ± 0.58 e | 7.3 ± 0.58 c | 2.7 ± 0.58 e | 5.7 ± 0.58 d | 9. 3 ± 1.53 b | 14.3 ± 0.58 a |
Total higher alcohols | 52.3 | 97.6 | 52.1 | 100.4 | 81 | 137.4 |
Medium-chain fatty acids | ||||||
Hexanoic acid (mg/L) | 5.45 ± 0.04 c | 5.73 ± 0.01 b | 5.41 ± 0.06 c | 5.72 ± 0.08 b | 7.26 ± 0.43 a | 7.26 ± 0.27 a |
Octanoic acid (mg/L) | 1.95 ± 0.11 b | 2.12 ± 0.03 b | 1.85 ± 0.13 b | 2.15 ± 0.07 b | 4.96 ± 0.70 a | 4.61 ± 0.44 a |
Decanoic acid (mg/L) | 1.67 ± 0.42 a | 1.91 ± 0.12 a | 0.99 ± 0.31 a | 1.14 ± 0.26 a | 1.78 ± 0.64 a | 1.62 ± 0.19 a |
Total medium-chain fatty acids | 9.07 | 9.76 | 8.25 | 9.01 | 14 | 13.49 |
Acetate esters | ||||||
Amyl acetate (mg/L) | n.q. | n.q. | n.q. | n.q. | 0.79 ± 0.83 a | 1.15 ± 0.26 b |
Isoamyl acetate (mg/L) | n.q. | n.q. | n.q. | n.q. | 1.21 ± 0.23 b | 3.12 ± 2.75 a |
2-Phenyl ethylacetate (mg/L) | n.q. | 0.014 ± 0.06 d | n.q. | 0.017 ± 0.01 c | 0.36 ± 0.36 b | 0.68 ± 0.36 a |
Ethyl acetate (mg/L) | n.q. | n.q. | n.q. | 36.6 ± 9.94 c | 93.9 ± 14.62 b | 152.2 ± 15.51 a |
Total acetate esters | 0 | 0.014 | 0 | 36.617 | 96.26 | 157.15 |
Ethyl esters | ||||||
Ethyl butyrate (µg/L) | n.q. | n.q. | n.q. | 35.2 ± 10.77 b | 447.0 ± 51.47 a | 493.0 ± 16.52 a |
Ethyl hexanoate (µg/L) | n.q. | n.q. | n.q. | n.q. | 458.3 ± 28.89 a | 221.2 ± 87.74 b |
Ethyl octanoate (µg/L) | n.q. | n.q. | n.q. | n.q. | 465.9 ± 76.74 a | 440.9 ± 107.22 a |
Ethyl decanoate (µg/L) | 179.4 ± 51.50 ab | 194.5 ± 6.44 ab | 99.9 ± 38.21 b | 129.0 ± 21.53 b | 276.5 ± 26.51 a | 189.2 ± 48.82 ab |
Ethyl propionate (µg/L) | 372.6 ± 91.46 cd | 502.1 ± 23.49 b | 363.7 ± 16.98 cd | 631.9 ± 28.23 a | 266.4 ± 73.50 d | 470.6 ± 26.31 bc |
Total ethyl esters | 552 | 696.6 | 463.6 | 796.1 | 1914.1 | 1814.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecca, D.; Benito, S.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D. Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma. Fermentation 2020, 6, 35. https://doi.org/10.3390/fermentation6010035
Mecca D, Benito S, Beisert B, Brezina S, Fritsch S, Semmler H, Rauhut D. Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma. Fermentation. 2020; 6(1):35. https://doi.org/10.3390/fermentation6010035
Chicago/Turabian StyleMecca, Debora, Santiago Benito, Beata Beisert, Silvia Brezina, Stefanie Fritsch, Heike Semmler, and Doris Rauhut. 2020. "Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma" Fermentation 6, no. 1: 35. https://doi.org/10.3390/fermentation6010035
APA StyleMecca, D., Benito, S., Beisert, B., Brezina, S., Fritsch, S., Semmler, H., & Rauhut, D. (2020). Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma. Fermentation, 6(1), 35. https://doi.org/10.3390/fermentation6010035