Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Medium
- -
- Solution 1: NaNO3, MgCl2, CaCl2, H3BO3, MnCl2, ZnCl2, CoCl, CuCl2, Na2MoO4, FeCl3, Na2EDTA
- -
- Solution 2: MgSO4
- -
- Solution 3: K2HPO4
- -
- Solution 4: NaHCO3
2.2. Photobioreactor
2.3. Oil Extraction
2.4. Calculation of Biodiesel Quality Parameters
3. Results
3.1. Microalgae Growth Curves
3.2. Biodesel Cahracterization
4. Discussion
4.1. Biodiesel Quality
4.2. Economic Aspects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Awudu, I.; Zhang, J. Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renew. Sustain. Energy Rev. 2012, 16, 1359–1368. [Google Scholar] [CrossRef]
- D’Alessandro, B.; D’Amico, M.; Desideri, U.; Fantozzi, F. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration. Appl. Energy 2013, 101, 423–431. [Google Scholar] [CrossRef]
- McCurdy, A.T.; Higham, A.J.; Morgan, M.R.; Quinn, J.C.; Seefeldt, L.C. Two-step process for production of biodiesel blends from oleaginous yeast and microalgae. Fuel 2014, 137, 269–276. [Google Scholar] [CrossRef] [Green Version]
- JRC Sustainable Advanced Biofuels. Report EUR 29929 EN. 2019. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC118309/jrc118309_1.pdf (accessed on 10 March 2020).
- Kumamoto University. Fast, Low Energy, and Continuous Biofuel Extraction from Microalgae. Available online: www.sciencedaily.com/releases/2017/04/170428093906.htm (accessed on 28 April 2017).
- Brennan, L.; Owende, P. Biofuels from microalgae a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2009, 14, 557–577. [Google Scholar] [CrossRef]
- Lee, Y.K. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 2001, 13, 307–315. [Google Scholar] [CrossRef]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.T. Feasibility of Jatropha oil for biodiesel: Economic Analysis. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011. [Google Scholar]
- Dangol, N.; Shrestha, D.S.; Duffield, J.A. Life-cycle energy, GHG and cost comparison of camelina-based biodiesel and biojet fuel. Biofuels 2017. [Google Scholar] [CrossRef]
- Festel, G.; Würmseher, M.; Rammer, C.; Boles, E.; Bellof, M. Modelling Production Cost Scenarios for Biofuels and Fossil Fuels in Europe, Discussion Paper No. 13-075. Available online: http://ftp.zew.de/pub/zew-docs/dp/dp13075.pdf (accessed on 20 March 2020).
- EUBIA. Biodeisel. Available online: https://www.eubia.org/cms/wiki-biomass/biofuels/biodiesel/ (accessed on 20 March 2020).
- Santana, G.C.S.; Martins, P.F.; de Lima da Silva, N.; Batistella, C.B.; Maciel Filho, R.; Wolf Maciel, M.R. Simulation and cost estimate for biodiesel production using castor oil. Chem. Eng. Res. Des. 2010, 8, 626–632. [Google Scholar] [CrossRef]
- Griffin, G.J.; Batten, D.F.; Beerb, T.; Campbell, P.K. The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region. Int. J. Renew. Energy Dev. 2013, 2, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Pfromm, P.H.; Amanor-Boadu, V.; Nelson, R. Sustainability of algae derived biodiesel: A mass balance approach. Bioresour. Technol. 2011, 102, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirbas, M. Biofuels from algae for sustainable development. Appl. Energy 2011, 88, 3473–3480. [Google Scholar] [CrossRef]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Newsted, J.L. Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga. Ecotoxicol. Environ. Saf. 2004, 59, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://protist.i.hosei.ac.jp/PDB3/PCD3683/htmls/93.html (accessed on 24 April 2020).
- Pérez, L.; Cancela, A.; Maceiras, R.; Salgueiro, J.L.; Sánchez, A. Selenastrum Capricornutum: Harvesting and Oil Extraction, for Biodiesel Production. Eur. J. Sustain. Dev. 2015, 4, 97–102. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Rai, M.P.; Gupta, S. Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers. Manag. 2017, 141, 85–92. [Google Scholar] [CrossRef]
- Moller, A. Danish Food Information 2011, Sheppard AJ Lipid Manual; U.S. Food and Drug Administration: Silver Spring, MD, USA, 1992.
- Piorreck, M.; Baasch, K.H.; Pohl, P. Biomass production, total protein, chlorophylls, lipids, and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 1984, 23, 207–216. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2008, 102, 100–112. [Google Scholar] [CrossRef]
- Schenk, P.; Thomas-Hall, S.; Stephens, E.; Marx, U. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Resour. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Rawat, I.; Ramluckan, K.; Bux, F. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 2014, 128, 46–52. [Google Scholar] [CrossRef]
- Buratti, C.; Costarelli, I.; Cotana, F.; Crisostomi, L.; Fantozzi, F. The biomass research centre laboratory for biomass characterization. In Proceedings of the 14th European Biomass Conference and Exhibition. Biomass for Energy Industry and Climate Protection, Paris, France, 17–21 October 2005. [Google Scholar]
- Mc Lamon-Riches, C.J.; Rolph, C.E.; Greenway, D.L.A.; Robinson, P.K. Effects of environmental factors and metals on Selenastrum capricornutum lipids. Phytochemistry 1998, 49, 1241–1247. [Google Scholar] [CrossRef]
- Volkman, J.K.; Jeffrey, S.W.; Nichols, P.D.; Rodgers, G.I.; Garland, C.D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1989, 128, 219–240. [Google Scholar] [CrossRef]
- Islam, M.A.; Ayoko, G.A.; Brown, R.; Stuart, D.; Heimann, K. Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Eng. 2013, 56, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Hung Chen, Y.; Yu Huang, B.; Han Chiang, T.; Cheng Tang, T. Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 2012, 94, 270–273. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K.C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuels applications. Bioresour. Technol. 2010, 101, 3097–3105. [Google Scholar] [CrossRef]
- Chen, L.; Liu, T.; Zhang, W.; Chen, X.; Wang, J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 2012, 111, 208–214. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Production and characterization of biodiesel from algae. Fuel Process. Technol. 2014, 120, 79–88. [Google Scholar] [CrossRef]
- Tuccar, G.; Aydın, K. Evaluation of methyl ester of microalgae oil as fuel in a diesel engine. Fuel 2013, 112, 203–207. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Don, W.; Zhang, X.; Tyagi, R.D.; Droguib, P.; Surampalli, R.Y. The potential of microalgae in biodiesel production. Renew. Sustain. Energy Rev. 2018, 90, 336–346. [Google Scholar] [CrossRef]
- Singh, B.; Guldhe, A.; Rawat, I.; Bux, F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 2014, 29, 216–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, W.T.; Yung, K.F. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. Appl. Energy 2014, 116, 191–198. [Google Scholar] [CrossRef]
Feedstock | Oil Content (% Dry Weight) | Oil Yield (L/ha Year) | Land Use (m2 Year/kg Biodiesel) | Biodiesel Productivity (kg Biodiesel/ha Year) | Cost of Biodiesel Production €/t |
---|---|---|---|---|---|
Corn | 44 | 172 | 66 | 152 | n.a. |
Hemp | 33 | 363 | 31 | 321 | n.a. |
Soybean | 18 | 636 | 18 | 562 | 0.53 €/L [10] |
Jatropha | 28 | 741 | 15 | 656 | 0.99 $/L [11] |
Camelina | 42 | 915 | 12 | 809 | 0.75 $/L [12] |
Canola | 41 | 974 | 12 | 862 | 0.74–1.5 €/L [13,14] |
Sunflower | 40 | 1070 | 11 | 946 | 0.74 [14] |
Castor | 48 | 1307 | 9 | 1156 | 1.5 $/kg [15] |
Palm oil | 36 | 5366 | 2 | 4747 | 0.10 €/L [13] |
Microalgae (low oil content) | 30 | 58,700 | 0.2 | 51,927 | 1.5–4 $/L [16] |
Microalgae (medium oil content) | 50 | 97,800 | 0.1 | 86,515 | |
Microalgae (high oil content) | 70 | 136,900 | 0.1 | 121,104 |
Species of Sample | Proteins | Carbohydrates | Lipids | Nucleic Acid |
---|---|---|---|---|
Scenedesmus obliquus | 50–56 | 10–17 | 12–14 | 3–6 |
Scenedesmus quadricauda | 47 | - | 1.9 | - |
Scenedesmus dimorphus | 8–18 | 21–52 | 16–40 | - |
Chlamydomonas rheinhardii | 48 | 17 | 21 | - |
Chlorella vulgaris | 51–58 | 12–17 | 14–22 | 4–5 |
Chlorella pyrenoidosa | 57 | 26 | 2 | - |
Spirogyra sp. | 6–20 | 33–64 | 11–21 | - |
Dunaliella bioculata | 49 | 4 | 8 | - |
Dunaliella salina | 57 | 32 | 6 | - |
Euglena gracilis | 39–61 | 14–18 | 14–20 | - |
Prymnesium parvum | 28–45 | 25–33 | 22–38 | 1–2 |
Tetraselmis maculata | 52 | 15 | 3 | - |
Porphyridium cruentum | 28–39 | 40–57 | 9–14 | - |
Spirulina platensis | 46–63 | 8–14 | 4–9 | 2–5 |
Spirulina maxima | 60–71 | 13–16 | 6–7 | 3–4.5 |
Synechoccus sp. | 63 | 15 | 11 | 5 |
Anabaena cylindrica | 43–56 | 25–30 | 4–7 | - |
Microalgae Species | Oil Content [% Dry wt] |
---|---|
Botryococcus braunii | 25–75 |
Chlorella sp. | 28–32 |
Crypthecodinium cohnii | 20 |
Cylindrotheca sp. | 16–37 |
Dunaliella primolecta | 23 |
Isochrysis sp. | 25–33 |
Monallanthus salina | >20 |
Nannochloris sp. | 20–35 |
Nannochloropsis sp. | 31–68 |
Neochloris oleoabundans | 35–54 |
Nitzschia sp. | 45–47 |
Phaeodactylum tricornutum | 20–30 |
Schitzochytrium sp. | 50–77 |
Tetraselmis sueica | 15–23 |
Parameter | Bottle | Photobioreactor |
---|---|---|
Biomass productivity (g) | 2.0 g/L | 2.4 g/L |
Lipid content (wt.% biomass) | 13 | 17.47 |
Moisture (wt.%) | 90.43 | 95.67 |
Carbon Number | FAME | Bottle (% of dw) | Photobioreactor (% of dw) |
---|---|---|---|
C10:0 | Capric acid | 0.030 | 0.040 |
C14:0 | Myristic acid | 0.190 | 0.170 |
C16:0 | Palmitic acid | 17.890 | 19.570 |
C16:1 | Palmitoleic acid | 0.180 | 0.320 |
C17:0 | Heptadecanoate acid | 0.240 | 0.250 |
C18:0 | Stearic acid | 1.660 | 1.260 |
C18:1 | Oleic acid cis | 59.530 | 54.820 |
C18:2 | Linoleic acid | 2.690 | 4.000 |
C18:2 | Linolenic acid n6 | 0.200 | 0.300 |
C18:3 | Linolenic acid n3 | 5.890 | 6.100 |
C20:1 | Acid C20:1 Cis | 0.840 | 0.550 |
C20:3 | Acid C20:3 n6 | 0.090 | 1.190 |
Characteristic | Selenastrum Capricornutum | Scenedemus Abundans |
---|---|---|
SV (mg KOH/g oil) | 179.90 | 205.8 |
IV (I2 g/100 g oil) | 71.98 | 85.07 |
CN | 60.54 | 53.68 |
DU (wt.%) | 78.87 | 76.78 |
LCSF (°C) | 18.48 | 16.12 |
CFPP (°C) | 41.60 | 34.17 |
OSI (h) | 4.40 | 5.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, A.; Biondi, L.; Bartocci, P.; Fantozzi, F. Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production. Fermentation 2020, 6, 46. https://doi.org/10.3390/fermentation6020046
Pugliese A, Biondi L, Bartocci P, Fantozzi F. Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production. Fermentation. 2020; 6(2):46. https://doi.org/10.3390/fermentation6020046
Chicago/Turabian StylePugliese, Annarita, Lorenzo Biondi, Pietro Bartocci, and Francesco Fantozzi. 2020. "Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production" Fermentation 6, no. 2: 46. https://doi.org/10.3390/fermentation6020046
APA StylePugliese, A., Biondi, L., Bartocci, P., & Fantozzi, F. (2020). Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production. Fermentation, 6(2), 46. https://doi.org/10.3390/fermentation6020046