Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Materials
2.3. Experimental Station
2.4. Analytical Methods
2.5. Calculation Methods
- PFH = the fan and heater power (CH) in Variant 1 or magnetron power (EMR) in Variant 2 [W];
- t = operation time [h·d−1].
- YMethane = daily CH4 production (dm3·d−1);
- EVMethane = energetic value of CH4 (Wh·dm−3).
- ED = total energy demand (Wh·d−1);
- EP = total energy production (Wh·d−1).
2.6. Statistical Analysis
3. Results and Discussion
3.1. Variant 1—Conventional Heating (CH)
3.2. Variant 2—Electromagnetic Microwave Radiation (EMR)
3.3. Energy Balance
3.4. Practical Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels; FUSIONS: Stockholm, Sweden, 2016. [Google Scholar]
- De Boeck, E.; Jacxsens, L.; Goubert, H.; Uyttendaele, M. Ensuring food safety in food donations: Case study of the Belgian donation/acceptation chain. Food Res. Int. 2017, 100, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Papargyropoulou, E.; Lozano, R.K.; Steinberger, J.; Wright, N.; Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Ezeudu, O.B.; Ezeudu, T.S. Implementation of Circular Economy Principles in Industrial Solid Waste Management: Case Studies from a Developing Economy (Nigeria). Recycling 2019, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Fowles, T.M.; Nansen, C. Insect-Based Bioconversion: Value from Food Waste. In Food Waste Management; Springer: Berlin/Heidelberg, Germany; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.Y.; Chiu, S.L.; Lo, I.M. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Manag. 2017, 67, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Kazimierowicz, J. Legal Regulations and Methods Neutralising Expired Food Products. J. Ecol. Eng. 2018, 19, 217–224. [Google Scholar] [CrossRef]
- Salemdeeb, R.; zu Ermgassen, E.K.H.J.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, J.; Zeng, Y.; Zhang, L. Households’ willingness to accept compensation for agricultural waste recycling: Taking biogas production from livestock manure waste in Hubei, P.R. China as an example. J. Clean. Prod. 2016, 131, 410–420. [Google Scholar] [CrossRef]
- Kazimierowicz, J. Biogas acquisition from selected mixtures of expired food products. J. Ecol. Eng. 2017, 18, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Ekanthalu, V.S.; Morscheck, G.; Narra, S.; Nelles, M. Hydrothermal Carbonization—A Sustainable Approach to Deal with the Challenges in Sewage Sludge Management. In Urban Mining and Sustainable Waste Management; Springer: Singapore, 2020; pp. 293–302. [Google Scholar]
- Sfez, S.; De Meester, S.; Vlaeminck, S.E.; Dewulf, J. Improving the resource footprint evaluation of products recovered from wastewater: A discussion on appropriate allocation in the context of circular economy. Resour. Conserv. Recycl. 2019, 148, 132–144. [Google Scholar] [CrossRef]
- Stürmer, S.; Leiers, D.; Anspach, V.; Brügging, E.; Scharfy, D.; Wissel, T. Agricultural biogas production: A regional comparison of technical parameters. Renew. Energy 2021, 164, 171–182. [Google Scholar] [CrossRef]
- Cheng, H.; Hiro, Y.; Hojo, T.; Li, Y.-Y. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresour. Technol. 2018, 267, 386–394. [Google Scholar] [CrossRef]
- Ma, C.; Liu, J.; Ye, M.; Zou, L.; Qian, G.; Li, Y.Y. Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renew. Sustain. Energy Rev. 2018, 90, 700–709. [Google Scholar] [CrossRef]
- Bot, F.; Plazzotta, S.; Anese, M. Chapter 16—Treatment of Food Industry Wastewater with Ultrasound: A Big Opportunity for the Technology. In Ultrasound: Advances for Food Processing and Preservation; Academic Press, Elsevier: Cambridge, MA, USA, 2017; pp. 391–408. [Google Scholar]
- Dębowski, M.; Kisielewska, M.; Kazimierowicz, J.; Rudnicka, A.; Dudek, M.; Romanowska-Duda, Z.; Zieliński, M. The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies 2020, 13, 2186. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of methane fermentation as a valorisation method for food waste products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, H.; Borrion, A.; Yu, Z.; Li, J. Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Appl. Energy 2018, 213, 136–147. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J. Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor. Energies 2020, 13, 2392. [Google Scholar] [CrossRef]
- Zieliński, M.; Kisielewska, M.; Dudek, M.; Rusanowska, P.; Nowicka, A.; Krzemieniewski, M.; Kazimierowicz, J.; Dębowski, M. Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production. Biomass Bioenergy 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int. J. Hydrogen Energy 2017, 42, 26522–26528. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M. Technological Effectiveness of Sugar-Industry Effluent Methane Fermentation in a Fluidized Active Filling Reactor (FAF-R). Energies 2020, 13, 6626. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation. Energies 2021, 14, 150. [Google Scholar] [CrossRef]
- Mwene-Mbeja, T.M.; Dufour, A.; Lecka, J.; Kaur, B.S.; Vaneeckhaute, C. Enzymatic reactions in the production of biomethane from organic waste. Enzym. Microb. Technol. 2019, 132, 109410. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M. Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review. Energy Sci. Eng. 2020, 8, 1880–1897. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Świca, I.; Rudnicka, A. The cultivation of lipid-rich microalgae biomass as anaerobic digestate valorization technology—A pilot-scale study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Cantero, D.; Jara, R.; Navarrete, A.; Pelaz, L.; Queiroz, J.; Rodríguez-Rojo, S.; Cocero, M.J. Pretreatment Processes of Biomass for Biorefineries: Current Status and Prospects. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 289–310. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Reynosa, A.; Romaní, A.; Ma. Rodríguez-Jasso, R.; Aguilar, C.N.; Garrote, G.; Ruiz, H.A. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Convers. Manag. 2017, 136, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Zaidi, A.A.; Zhang, K.; Shi, Y. Optimisation of Microwave Pretreatment for Biogas Enhancement through Anaerobic Digestion of Microalgal Biomass. Period. Polytech. Chem. Eng. 2018, 63, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, A.A.; Feng, R.; Malik, A.; Khan, S.Z.; Shi, Y.; Bhutta, A.J.; Shah, A.H. Combining Microwave Pretreatment with iron oxide nanoparticles enhanced biogas and hydrogen yield from green algae. Processes 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Brudniak, A.; Kisielewska, M. Possibility of improving technological effectiveness of dairy wastewater treatment through application of active fillings and microwave radiation. J. Water Chem. Technol. 2016, 38, 342–348. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Rusanowska, P. Influence of microwave heating on biogas production from Sida hermaphrodita silage. Bioresour. Technol. 2017, 245, 1290–1293. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Szwarc, D.; Szwarc, K.; Rokicka, M. Impact of microwave heating on the efficiency of methane fermentation of algae biomass. Pol. J. Nat. Sci. 2017, 32, 561–571. [Google Scholar]
- Zieliński, M.; Zielińska, M.; Dębowski, M. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters. Bioresour. Technol. 2013, 127, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M. Nitrogen compounds transformation in the biological filter by means of direct energy supply to the biofilm. Environ. Technol. 2006, 27, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Kostas, E.T.; Beneroso, D.; Robinson, J.P. The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew. Sustain. Energy Rev. 2017, 77, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Loh, K.-C.; Zhang, J. Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation. Chem. Eng. J. 2019, 372, 815–824. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Y.; Luan, D. Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. LWT 2020, 133, 109861. [Google Scholar] [CrossRef]
- Bichot, A.; Lerosty, M.; Radoiu, M.; Méchin, V.; Bernet, N.; Delgenčs, J.-P.; García-Bernet, D. Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Convers. Manag. 2020, 203, 112220. [Google Scholar] [CrossRef]
- Song, H.; Zhang, Y.; Kusch-Brandt, S.; Banks, C.J. Comparison of variable and constant loading for mesophilic food waste digestion in a long-term experiment. Energies 2020, 13, 1279. [Google Scholar] [CrossRef] [Green Version]
- Ariunbaatar, J.; Panico, A.; Frunzo, L.; Esposito, G.; Lens, P.N.L.; Pirozzi, F. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. J. Environ. Manag. 2014, 146, 142–149. [Google Scholar] [CrossRef]
- Browne, J.D.; Murphy, J.D. Assessment of the resource associated with biomethane from food waste. Appl. Energy 2013, 104, 170–177. [Google Scholar] [CrossRef]
- Facchin, V.; Cavinato, C.; Fatone, F.; Pavan, P.; Cecchi, F.; Bolzonella, D. Effect of trace element supplementation on the mesophilic anaerobic digestion of food waste in batch trials: The influence of inoculum origin. Biochem. Eng. J. 2013, 70, 71–77. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresour. Technol. 2014, 157, 174–180. [Google Scholar] [CrossRef]
- Voelklein, M.A.; Jacob, A.; O’ Shea, R.; Murphy, J.D. Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 2016, 202, 172–180. [Google Scholar] [CrossRef]
- Yirong, C. Thermophilic Anaerobic Digestion of Food Waste. Ph.D. Thesis, University of Southampton, Southampton, UK, 2014. [Google Scholar]
- Capson-Tojo, G.; Rouez, M.; Crest, M.; Steyer, J.-P.; Delgenčs, J.-P.; Escudié, R. Food waste valorization via anaerobic processes: A review. Rev. Environ. Sci. Bio/Technol. 2016, 15, 499–547. [Google Scholar] [CrossRef]
- Nathao, C.; Sirisukpoka, U.; Pisutpaisal, N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrogen Energy 2013, 38, 15764–15769. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y.; Zhao, M.; Huang, Z.; Miao, H.; Xu, Z.; Ruan, W. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. Int. Biodeterior. Biodegrad. 2015, 105, 153–159. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, C.; Tong, J.; Liu, J.; Liu, J.; Yu, D.; Wang, Y.; Chen, M.; Wei, Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016, 200, 253–261. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; El-Mashad, H.M.; Dong, R. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 2009, 100, 5103–5108. [Google Scholar] [CrossRef]
- Shahriari, H.; Warith, M.; Kennedy, K.J. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities e high temperature microwave and hydrogen peroxide. Waste Manag. 2012, 32, 41–52. [Google Scholar] [CrossRef]
- Nowicka, A.; Zieliński, M.; Dębowski, M.; Dudek, M.; Rusanowska, P. Progress in the production of biogas from Virginia mallow after alkaline-heat pretreatment. Biomass Bioenergy 2019, 126, 174–180. [Google Scholar] [CrossRef]
- Passos, F.; Solé, M.; García, J.; Ferrer, I. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Appl. Energy 2013, 108, 168–175. [Google Scholar] [CrossRef]
- Climent, M.; Ferrer, I.; Baeza, M.M.; Artola, A.; Vázquez, F.; Font, X. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 2007, 133, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 2006, 40, 3725–3736. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Enhanced disinfection and methane production from sewage sludge by microwave irradiation. Desalination 2009, 248, 279–285. [Google Scholar] [CrossRef]
- Sólyom, K.; Mato, R.B.; Pérez-Elvira, S.I.; Cocero, M.J. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour. Technol. 2011, 102, 10849–10854. [Google Scholar] [CrossRef]
- Zheng, J.; Kennedy, K.J.; Eskicioglu, C. Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge. Environ. Technol. 2009, 30, 319–327. [Google Scholar] [CrossRef]
- Zieliński, M.; Ciesielski, S.; Cydzik-Kwiatkowska, A.; Turek, J.; Dębowski, M. Influence of microwave radiation on bacterial activity and community structure in biofilm. Process Biochem. 2007, 42, 1250–1253. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Zieliński, M.; Jaranowska, P. Microwave radiation and reactor design influence microbial communities during methane fermentation. J. Ind. Microbiol. Biotechnol. 2012, 39, 1397–1405. [Google Scholar] [CrossRef]
- Pakhomov, A.G.; Akyel, Y.; Pakhomova, O.N.; Stuck, B.E.; Murphy, M.R. Current state and implications of research on biological effects of milimeter waves: A review of the literature. Bioelectromagnetics 1998, 19, 393–413. [Google Scholar] [CrossRef]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of microwave—A brief review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
- Zielińska, M.; Cydzik-Kwiatkowska, A.; Zieliński, M.; Dębowski, M. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater. Bioresour. Technol. 2013, 129, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef]
- Banik, S.; Sharma, A.; Dan, D. Effect of microwave on cell biology of Methanosarcina Barkeri. J. Mycopathol. Res. 2003, 41, 217–219. [Google Scholar]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S.; Dan, D. Effect of microwave irradiated Methanosarcina barkeri DSM-804 on biomethanation. Bioresour. Technol. 2006, 97, 819–823. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M. The Possibility of Hybrid-Bioreactor Heating by the Microwave Radiation. Int. J. Chem. React. Eng. 2018, 16, 20160115. [Google Scholar] [CrossRef]
- Krzemieniewski, M.; Dębowski, M.; Zieliński, M. Device for Conducting Methane Fermentation Process of Organic Materials. Patent 214508, 18 January 2013. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.391339?lng=pl (accessed on 18 January 2013).
Indicator | Unit | Value | |
---|---|---|---|
Food Waste | Anaerobic Sludge | ||
pH | - | 7.8 ± 0.14 | 7.5 ± 0.1 |
Total solids (TS) | g·dm−3 | 251 ± 8.7 | 41.5 ± 1.7 |
Volatile solids (VS) | g·dm−3 | 229 ± 4.2 | 32.1 ± 2.3 |
Mineral solids (MS) | g·dm−3 | 22 ± 4.2 | 9.4 ± 2.3 |
Total carbon (TC) | g TC·dm−3 | 81.2 ± 7.9 | 23.3 ± 2.9 |
Inorganic carbon (IC) | g IC·dm−3 | 9.3 ± 1.4 | 4.7 ± 0.9 |
Total organic carbon (TOC) | g TOC·dm−3 | 74 ± 6.2 | 14.2 ± 1.7 |
Ntot | g Ntot·dm−3 | 7.1 ± 1.3 | 1.9 ± 0.7 |
C/N | - | 11.4 ± 1.2 | 12.3 ± 0.8 |
Ptot | g Ptot·dm−3 | 1.7 ± 0.5 | 0.8 ± 0.1 |
Protein | g·dm−3 | 44.4 ± 8.1 | 11.9 ± 4.3 |
Sugars | g·dm−3 | 16.1 ± 2.3 | 1.8 ± 0.6 |
Lipids | g·dm−3 | 69.5 ± 4.9 | 4.9 ± 0.8 |
Total alkalinity | g CaCO3·dm−3 | 8.1 ± 0.9 | 7.2 ± 0.4 |
Volatile fatty acid (VFA) | g CH3COOH·dm−3 | 0.34 ± 0.06 | 0.29 ± 0.1 |
VFA/total alkalinity | - | 0.04 ± 0.04 | 0.06 ± 0.03 |
Application | Substrate | Optimal Conditions | Effects | Ref. | |
---|---|---|---|---|---|
Pretreatment Conditions | Batch Test Conditions | ||||
Heating | Alga biomass | 800 W, 2.45 GHz | 35 ± 1 °C | Increase of 2.88% in biogas production * | [36] |
Dairy wastewaters | 800 W, 2.45 GHz | 35 °C | Increase of 14.0 to 24.0% in biogas production *, respectively | [34] | |
Sida hermaphrodita silage | 1600 W, 2.45 GHz | 45 d | Increase of 8% in biogas production * | [35] | |
Virginia mallow | 1600 W, 2.45 GHz | 36 °C | Increase of 8% in biogas production * | [56] | |
Disintegration | Silage of Sida hermaphrodita mixed with cattle manure | 150 °C, 15 min | 35 °C; 30 d | Increase of 35.6% in methane production * | [23] |
Green microalgae (Enteromorpha) | 600 W, 6 min | 37 °C, 150 rpm | Increase of 29.8% in biogas production * | [32] | |
Microalgae from highly populated algal ponds | 65.4 MJ·kg TS−1, 900 W, 98 °C | 35 °C | Increase of 78% in biogas production * | [57] | |
Activated sludge | 5 min, 800 W, 13,000 kJ·kg SS−1 (suspended solids) | 55 °C, 32 d | Increase of 311% in the VSs/VS ratio and no difference in biogas production and production rate * | [58] | |
5 min, 96 °C, 5.5% TS | 33 °C, 23 d | Increase of 143% in the CODs/COD ratio and 211% in the cumulative biogas production * | [59] | ||
Progressive heating 1.2–1.4 C·min−1, 175 °C | 33 °C, 18 d | Increase of 74.3% in COD solubilisation and 34% in biogas production * | [60] | ||
0.83 kJ·cm−3, 1000 W, 7–8% TS | 35 °C, 20–25 d | Decreased solubilisation (CODs/COD) and increase of 15.4% in methane production * | [61] | ||
1168 W, 90 °C, 4% TS | 35 °C, 22 d | Increase of 2.5% in the CODs/COD ratio, and 37% in the digestion rate, and no impact on methane production | [62] | ||
Food waste | 2450 MHz, 175 °C | 33 ± 1 °C, 120 rpm | Increase of 8% in biogas production * | [55] | |
2450 MHz, 1000 W, 100 °C | 37 ± 0.5 °C, 35 d | Increase of 4.89% in methane production * | [53] | ||
1460 W, 2450 MHz | 30 d | Increase of 6.43% in biogas production * | [24] |
Variant | Power (W) | Operation Time (h·d−1) | Number of Reactors (-) | Total Energy Demand (Wh·d−1) | Biogas Yield (dm3·kgVS−1) | OLR (kgVS·m−3·d−1) | Active Volume (dm3) | L (kg·d−1) | Daily Biogas Production (dm3·d−1) | CH4 Concentration (%) | Daily CH4 Production (dm3·d−1) | Energetic Value of CH4 (Wh·dm−3) | Total Energy Production (Wh·d−1) | Energy Balance (Wh·d−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | 412 | 0.5 | 3 | 206 | 680 | 2 | 12 | 0.024 | 16.32 | 0.625 | 10.20 | 9.17 | 93.5 | −112.5 |
V2 | 300 | 0.3 | 90 | 710 | 17.04 | 0.635 | 10.82 | 99.2 | 9.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierowicz, J.; Zieliński, M.; Dębowski, M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation 2021, 7, 12. https://doi.org/10.3390/fermentation7010012
Kazimierowicz J, Zieliński M, Dębowski M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation. 2021; 7(1):12. https://doi.org/10.3390/fermentation7010012
Chicago/Turabian StyleKazimierowicz, Joanna, Marcin Zieliński, and Marcin Dębowski. 2021. "Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products" Fermentation 7, no. 1: 12. https://doi.org/10.3390/fermentation7010012
APA StyleKazimierowicz, J., Zieliński, M., & Dębowski, M. (2021). Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation, 7(1), 12. https://doi.org/10.3390/fermentation7010012