In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microorganisms and Cultivation
2.3. Biocompatibility Testing
2.4. Distribution Coefficients
2.5. Analytics
3. Results
3.1. Solvent Screening
3.2. Solvent Mixtures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, Y.S.; Kim, B.; Shin, J.H.; Choi, Y.J.; Choi, S.; Song, C.W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2-C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar] [CrossRef] [PubMed]
- Demeke, M.M.; Dietz, H.; Li, Y.; Foulquié-Moreno, M.R.; Mutturi, S.; Deprez, S.; Den Abt, T.; Bonini, B.M.; Liden, G.; Dumortier, F.; et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Koelewijn, S.F.; van den Bossche, G.; van Aelst, J.; van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; van Aelst, K.; Maesen, M.; et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 2020, 367, 1385–1390. [Google Scholar] [CrossRef]
- Averesch, N.J.H.; Winter, G.; Krömer, J.O. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 2016, 15, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saboe, P.O.; Manker, L.P.; Michener, W.E.; Peterson, D.J.; Brandner, D.G.; Deutch, S.P.; Kumar, M.; Cywar, R.M.; Beckham, G.T.; Karp, E.M. In situ recovery of bio-based carboxylic acids. Green Chem. 2018, 20, 1791–1804. [Google Scholar] [CrossRef]
- Outram, V.; Lalander, C.; Lee, J.G.M.; Davies, E.T.; Harvey, A.P. Applied in situ product recovery in ABE fermentation. Biotechnol. Prog. 2017, 33, 563–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antony, F.M.; Wasewar, K. Effect of temperature on equilibria for physical and reactive extraction of protocatechuic acid. Heliyon 2020, 6, e03664. [Google Scholar] [CrossRef] [PubMed]
- Dafoe, J.T.; Daugulis, A.J. In situ product removal in fermentation systems: Improved process performance and rational extractant selection. Biotechnol. Lett. 2014, 36, 443–460. [Google Scholar] [CrossRef]
- Vincent, R.H.; Parent, J.S.; Daugulis, A.J. Using poly(vinyldodecylimidazolium bromide) for the in-situ product recovery of n-butanol. Biotechnol. Prog. 2020, 36. [Google Scholar] [CrossRef]
- Brennan, T.C.R.; Turner, C.D.; Krömer, J.O.; Nielsen, L.K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 2513–2522. [Google Scholar] [CrossRef]
- De, B.S.; Wasewar, K.L.; Dhongde, V.; Mishra, T. A step forward in the development of in situ product recovery by reactive separation of protocatechuic acid. React. Chem. Eng. 2019, 4, 78–89. [Google Scholar] [CrossRef]
- Keshav, A.; Wasewar, K.L. Back extraction of propionic acid from loaded organic phase. Chem. Eng. Sci. 2010, 65, 2751–2757. [Google Scholar] [CrossRef]
- Krzyzaniak, A.; Leeman, M.; Vossebeld, F.; Visser, T.J.; Schuur, B.; De Haan, A.B. Novel extractants for the recovery of fermentation derived lactic acid. Sep. Purif. Technol. 2013, 111, 82–89. [Google Scholar] [CrossRef]
- Okai, N.; Masuda, T.; Takeshima, Y.; Tanaka, K.; Yoshida, K.; Miyamoto, M.; Ogino, C.; Kondo, A. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase. AMB Express 2017, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- López-Garzón, C.S.; Straathof, A.J.J. Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 2014, 32, 873–904. [Google Scholar] [CrossRef]
- López, J.; Essus, K.; Kim, I.; Pereira, R.; Herzog, J.; Siewers, V.; Nielsen, J.; Agosin, E. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tippmann, S.; Chen, Y.; Siewers, V.; Nielsen, J. From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae. Biotechnol. J. 2013, 8, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Bao, X.; Li, C.; Shen, Y.; Hou, J. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2016, 100, 4561–4571. [Google Scholar] [CrossRef]
- Uribe, S.; Pena, A. Toxicity of allelopathic monoterpene suspensions on yeast dependence on droplet size. J. Chem. Ecol. 1990, 16, 1399–1408. [Google Scholar] [CrossRef]
- Gottardi, M.; Knudsen, J.D.; Prado, L.; Oreb, M.; Branduardi, P.; Boles, E. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 4883–4893. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Yan, W.; Zhang, W.; Dong, W.; Ma, J.; Ochsenreither, K.; Jiang, M.; Xin, F. Current status and perspectives of 2-phenylethanol production through biological processes. Crit. Rev. Biotechnol. 2019, 39, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Cho, B.-R.; Hahn, J.-S. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 2014, 111, 115–124. [Google Scholar] [CrossRef]
- Sendovski, M.O.R.; Nir, N.; Fishman, A. Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J. Agric. Food Chem. 2010, 58, 2260–2265. [Google Scholar] [CrossRef] [PubMed]
- Bruce, L.J.; Daugulis, A.J. Solvent selection strategies for extractive biocatalysis. Biotechnol. Prog. 1991, 7, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Duetz, W.A. Microtiter plates as mini-bioreactors: Miniaturization of fermentation methods. Trends Microbiol. 2007, 15, 469–475. [Google Scholar] [CrossRef]
- Ling, H.; Chen, B.; Kang, A.; Lee, J.M.; Chang, M.W. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: Identification of efflux pumps involved in alkane tolerance. Biotechnol. Biofuels 2013, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yankov, D.; Molinier, J.; Albet, J.; Malmary, G.; Kyuchoukov, G. Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochem. Eng. J. 2004, 21, 63–71. [Google Scholar] [CrossRef]
- Jongedijk, E.; Cankar, K.; Ranzijn, J.; van der Krol, S.; Bouwmeester, H.; Beekwilder, J. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 2014, 32. [Google Scholar] [CrossRef] [Green Version]
- Gill, C.O.; Ratledge, C. Toxicity of n-alkanes, n-alk-1-enes, n-alkan-1-ols and n-alkyl-1-bromides towards yeasts. J. Gen. Microbiol. 1972, 72, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Elst, K. Development of reactive extraction systems for itaconic acid: A step towards in situ product recovery for itaconic acid fermentation. RSC Adv. 2014, 4, 45029–45039. [Google Scholar] [CrossRef]
- Zautsen, R.R.M.; Maugeri-Filho, F.; Vaz-Rossell, C.E.; Straathof, A.J.J.; van der Wielen, L.A.M.; de Bont, J.A.M. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate. Biotechnol. Bioeng. 2009, 102, 1354–1360. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Heesink, A.B.M.; Versteeg, G.F.; Pangarkar, V.G. Reactive extraction of lactic acid using alamine 336 in MIBK: Equilibria and kinetics. J. Biotechnol. 2002, 97, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Eda, S.; Borra, A.; Parthasarathy, R.; Bankupalli, S.; Bhargava, S.; Thella, P.K. Recovery of levulinic acid by reactive extraction using tri-n-octylamine in methyl isobutyl ketone: Equilibrium and thermodynamic studies and optimization using Taguchi multivariate approach. Sep. Purif. Technol. 2018, 197, 314–324. [Google Scholar] [CrossRef]
- Kreyenschulte, D.; Heyman, B.; Eggert, A.; Maßmann, T.; Kalvelage, C.; Kossack, R.; Regestein, L.; Jupke, A.; Büchs, J. In situ reactive extraction of itaconic acid during fermentation of Aspergillus terreus. Biochem. Eng. J. 2018, 135, 133–141. [Google Scholar] [CrossRef]
- Harris, J.; Daugulis, A.J. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors. Biotechnol. Bioeng. 2015, 112, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Yabannavar, V.M.; Wang, D.I.C. Strategies for reducing solvent toxicity in extractive fermentations. Biotechnol. Bioeng. 1991, 37, 716–722. [Google Scholar] [CrossRef]
- Waghmare, M.D.; Wasewar, K.L.; Sonawane, S.S.; Shende, D.Z. Reactive extraction of picolinic and nicotinic acid by natural non-toxic solvent. Sep. Purif. Technol. 2013, 120, 296–303. [Google Scholar] [CrossRef]
- Gu, Z.; Glatz, B.A.; Glatz, C.E. Propionic acid production by extractive fermentation. I. Solvent considerations. Biotechnol. Bioeng. 1998, 57, 454–461. [Google Scholar] [CrossRef]
- Groot, W.J.; Soedjak, H.S.; Donck, P.B.; van der Lans, R.G.J.M.; Luyben, K.C.A.M.; Timmer, J.M.K. Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction. Bioprocess. Eng. 1990, 5, 203–216. [Google Scholar] [CrossRef]
- Adhami, L.; Griggs, B.; Himebrook, P.; Taconi, K. Liquid-liquid extraction of Butanol from dilute aqueous solutions using soybean-derived biodiesel. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 1123–1128. [Google Scholar] [CrossRef]
- Yen, H.W.; Wang, Y.C. The enhancement of butanol production by in situ butanol removal using biodiesel extraction in the fermentation of ABE (acetone-butanol-ethanol). Bioresour. Technol. 2013, 145, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, C.; Tan, B.; Xu, D.; Wang, Y.; Qi, T. Application of a sustainable bioderived solvent (biodiesel) for phenol extraction. ACS Omega 2019, 4, 10431–10437. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.; Luna, D.; Calero, J.; Posadillo, A. Biofuel that keeps glycerol as monoglyceride by 1,3-selective ethanolysis with pig pancreatic lipase covalently immobilized on AlPO4 support. Energies 2013, 6, 3879–3900. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.H.; Zeng, R.; Wang, Y.; Li, X.K.; Lv, Z.S.; Lai, B.; Yang, S.Q.; Liao, J.G. Tolerance of immobilized yeast cells in imidazolium-based ionic liquids. Food Technol. Biotechnol. 2009, 47, 62–66. [Google Scholar]
Solvent | Biocompatibility | Distribution Coefficient (Kd) | |||||
---|---|---|---|---|---|---|---|
Relative OD600 | Glucose Consumed (%) | pABA | PCA | AA | CA | 2-PE | |
ALKANES | |||||||
Octane | 0.06 | 0.0 | 0.34 | 0.29 | 0.00 | 13.5 | 0.63 |
Nonane | 0.13 | 0.0 | 0.00 | 0.32 | 0.00 | 14.7 | 0.69 |
Dodecane | >0.99 | >98 | 0.04 | 0.26 | 0.00 | 13.4 | 0.65 |
Hexadecane | 0.84 | >98 | 0.05 | 0.10 | 0.00 | 12.5 | 0.42 |
ALCOHOLS | |||||||
Butanol | 0.08 | 0.0 | 4.24 | 1.82 | 1.40 | 50.9 | 15.2 |
Octanol | 0.10 | 0.0 | 2.32 | 1.65 | 0.45 | 49.9 | 19.4 |
Decanol | 0.07 | 0.0 | 1.39 | 1.09 | 0.29 | 62.9 | 11.8 |
Undecanol | 0.26 | 0.0 | 1.50 | 0.58 | 0.24 | 57.5 | 12.5 |
Dodecanol | 0.29 | 0.0 | 1.46 | 0.66 | 0.19 | 54.7 | 9.04 |
Oleyl alcohol | 0.96 | >98 | 1.58 | 4.19 | 0.12 | 53.5 | 6.75 |
Isoamyl alcohol | 0.00 | 0.0 | 3.75 | 22.7 | 1.18 | 76.7 | 18.7 |
2-Ethyl-1-hexanol | 0.16 | 0.0 | 2.14 | 0.94 | 0.50 | 76.2 | 16.8 |
2-Butyl-1-octanol | >0.99 | >98 | 1.15 | 0.59 | 0.16 | 21.9 | 8.15 |
2-Hexyl-1-decanol | n.a. † | >98 | 1.11 | 0.00 | 0.04 | 22.6 | 5.36 |
ETHERS | |||||||
tert-Butyl methyl ether | 0.04 | 0.0 | 0.30 | 0.54 | 0.44 | 67.4 | 7.62 |
Diisopentyl ether | n.a. † | 0.0 | 0.00 | 0.00 | 0.00 | 31.1 | 2.02 |
Dihexyl ether | n.a. † | 0.0 | 0.00 | 0.29 | 0.00 | 32.2 | 1.95 |
Didecyl ether (decyl ether) | n.a. † | >98 | 0.00 | 0.54 | 0.00 | 23.3 | 1.22 |
ESTERS | |||||||
Ethyl caprylate | 0.06 | 10.5 | 1.06 | 0.00 | 0.00 | 81.6 | 1.76 |
Ethyl decanoate | 0.70 | >98 | 0.71 | 0.14 | 0.00 | 108 | 1.26 |
Ethyl laurate | 0.89 | >98 | 0.69 | 0.29 | 0.01 | 115 | 1.02 |
Isopropyl myristate | >0.99 | >98 | 0.58 | 0.33 | 0.00 | 71.8 | 0.83 |
Ethyl oleate | >0.99 | >98 | 0.53 | 0.00 | 0.00 | 76.9 | 0.75 |
Dibutyl maleate | n.a. † | >98 | 2.17 | 0.20 | 0.01 | 231 | 2.14 |
Diisobutyl adipate | n.a. † | >98 | 2.52 | 0.26 | 0.00 | 181 | 2.29 |
Bis-2-ethylhexyl adipate | 0.95 | >98 | 0.85 | 0.05 | 0.00 | 118 | 1.00 |
Tributyrin | 0.87 | >98 | 2.73 | 0.50 | 0.04 | 230 | 2.82 |
Tributyl citrate | 0.80 | 94.7 | 1.83 | 0.34 | 0.03 | 173 | 2.98 |
Methyl phenyl acetate | n.a. † | 0.0 | 2.39 | 0.57 | 0.00 | 252 | 1.43 |
Benzyl benzoate | n.a. † | >98 | 0.00 | 0.29 | 0.00 | 224 | 1.62 |
Bis-2-ethylhexyl phthalate | >0.99 | >98 | 0.64 | 0.00 | 0.00 | 111 | 5.13 |
Diisononyl phthalate | >0.99 | >98 | 0.00 | 0.42 | 0.00 | 236 | 3.96 |
KETONES | |||||||
Methyl isobutyl ketone | n.a. † | 0.0 | 4.20 | 1.54 | 0.34 | 143 | 16.8 |
4-decanone | 0.00 | 0.0 | 0.82 | 0.87 | 0.00 | 139 | 7.63 |
VEGETABLE OILS | |||||||
Canola oil | 0.76 | >98 | 0.00 | 0.23 | 0.00 | 58.3 | 2.10 |
Sunflower oil | 0.81 | >98 | 0.00 | 0.00 | 0.01 | 49.4 | 2.00 |
FATTY ACID METHYL ESTERS | |||||||
Castor oil FAME | >0.99 | >98 | 5.64 | 2.95 | 0.15 | 53.8 | 2.21 |
Linseed oil FAME | >0.99 | >98 | 3.67 | 1.15 | 0.00 | 40.2 | 0.83 |
Soybean oil FAME | 0.65 | 67.4 | 1.35 | 1.14 | 0.00 | 40.2 | 0.67 |
Sunflower oil FAME | >0.99 | >98 | 1.60 | 1.08 | 0.00 | 37.8 | 0.56 |
Methyl oleate | >0.99 | 91.9 | 1.96 | 1.21 | 0.00 | 34.4 | 0.64 |
C16-C18 mixture of FAME | >0.99 | 91.9 | 1.35 | 1.16 | 0.00 | 35.6 | 0.57 |
POLYMERS | |||||||
PPG1000 | >0.99 | >98 | 5.72 | 10.18 | 1.73 | 46.8 | 25.5 |
PPG2000 | 0.89 | >98 | 11.1 | 8.23 | 0.40 | 102 | 14.1 |
PPG4000 | 0.77 | >98 | 9.51 | 4.88 | 0.58 | 102 | 12.7 |
IONIC LIQUIDS | |||||||
BMIM[TF2N] | n.a. † | >98 | 0.94 | 0.16 | 0.06 | 166 | 10.2 |
BMIM[PF6] | n.a. † | >98 | 4.39 | 0.00 | 0.05 | 93.3 | 0.27 |
MPPyr[Tf2N] | n.a. † | >98 | 0.61 | 0.11 | 0.03 | 140 | 7.02 |
MOA[Tf2N] | n.a. † | >98 | 0.00 | 0.12 | 0.00 | 102 | 4.22 |
CYPHOS IL-101 | n.a. † | 0.0 | 22.7 | 47.1 | 14.7 | 165 | 108 |
CYPHOS IL-104 | n.a. † | 5.4 | 3.70 | 54.2 | 2.25 | 119 | 43.8 |
Aliquat 336 | n.a. † | 0.0 | 12.7 | 52.9 | 9.75 | 140 | 53.3 |
AMINES | |||||||
Tributylamine | 0.00 | 0.0 | 0.00 | 0.00 | 0.01 | 21.2 | 2.63 |
Trioctylamine | n.a. † | 5.4 | 0.00 | 1.06 | 0.61 | 27.6 | 1.38 |
Tridodecylamine | 0.06 | 26.3 | 0.16 | 1.35 | 0.40 | 27.1 | 27.2 |
PHOSPHOROUS COMPOUNDS | |||||||
CYTOP 503 | n.a. † | 55.9 | 15.4 | 47.2 | 13.2 | 144 | 63.6 |
Tributyl phosphate | n.a. † | 26.0 | 33.7 | 40.3 | 4.86 | 221 | 42.4 |
Reactive extraction Mixtures | |||||||
---|---|---|---|---|---|---|---|
Extractant | Diluent | Extractant Ratio (% v/v) | Glucose Consumed (%) | Extractant | Diluent | Extractant Ratio (% v/v) | Glucose Consumed (%) |
CYPHOS IL-101 | Canola oil | 2.5 | 7.74 | Tributyl phosphate | Canola oil | 15 | >98 |
5 | 9.31 | ||||||
12.5 | 11.5 | 20 | 50.4 | ||||
Oleyl alcohol | 25 | >98 | Oleyl alcohol | 25 | >98 | ||
PPG1000 | 5 | 2.03 | PPG1000 | 12.5 | >98 | ||
12.5 | 2.33 | Dodecane | 5 | >98 | |||
Dodecane | 5 | 0.00 | 12.5 | 11.6 | |||
Sunflower oil FAME | 5 | 0.00 | Sunflower oil FAME | 12.5 | >98 | ||
CYPHOS IL-104 | Canola oil | 2.5 | 9.25 | CYTOP 503 | Canola oil | 5 | >98 |
5 | 18.9 | 12.5 | 97.1 | ||||
12.5 | 18.0 | 25 | 57.2 | ||||
Oleyl alcohol | 25 | >98 | 50 | 24.1 | |||
PPG1000 | 2.5 | 70.4 | Oleyl alcohol | 5 | >98 | ||
5 | 53.6 | 12.5 | 91.3 | ||||
12.5 | 20.4 | PPG1000 | 5 | >98 | |||
Dodecane | 5 | 15.9 | 12.5 | 87.7 | |||
12.5 | 0.00 | Dodecane | 5 | >98 | |||
Sunflower oil FAME | 5 | 0.00 | 12.5 | 90.4 | |||
Sunflower oil FAME | 12.5 | >98 | |||||
Trioctyl-amine | Canola oil | 2.5 | 73.4 | Aliquat 336 | Canola oil | 1 | 12.5 |
5 | 6.73 | 2.5 | 0.00 | ||||
12.5 | 0.00 | Oleyl alcohol | 2.5 | >98 | |||
Oleyl alcohol | 12.5 | >98 | 5 | 0.00 | |||
PPG1000 | 5 | 7.33 | PPG1000 | 5 | 10.1 | ||
12.5 | 10.7 | 12.5 | 0.00 | ||||
Dodecane | 5 | 91.5 | Dodecane | 5 | 0.00 | ||
12.5 | 0.00 | Sunflower oil FAME | 5 | 0.00 | |||
Sunflower oil FAME | 5 | >98 | |||||
12.5 | 85.6 | ||||||
Alternative Solvent Mixtures | |||||||
Solvent 1 | Solvent 2 | Solvent Ratio (% v/v) (Solvent 1 : Solvent 2) | Glucose Consumed (%) | ||||
Isoamyl alcohol | Oleyl alcohol | 20 : 80 | 6.59 | ||||
40 : 60 | 1.90 | ||||||
Octanol | Oleyl alcohol | 20 : 80 | 37.8 | ||||
40 : 60 | 4.76 | ||||||
MIBK | Tributyrin | 20 : 80 | 46.5 | ||||
40 : 60 | 4.22 |
Extractant | Diluent | Extractant Ratio | Distribution Coefficient (Kd) | |||
---|---|---|---|---|---|---|
(% v/v) | pABA | PCA | AA | 2-PE | ||
CYPHOS IL-101 | Oleyl alcohol | 5 | 1.90 | 2.52 | 0.50 | 11.6 |
12.5 | 2.42 | 8.03 | 1.03 | 12.7 | ||
25 | 4.83 | 19.1 | 1.53 | 15.6 | ||
CYPHOS IL-104 | Oleyl alcohol | 5 | 1.63 | 1.26 | 0.45 | 10.9 |
12.5 | 1.95 | 3.39 | 0.66 | 11.4 | ||
25 | 3.05 | 14.1 | 1.54 | 13.0 | ||
PPG1000 | 2.5 | 8.51 | 13.9 | 1.74 | 20.3 | |
Aliquat 336 | Oleyl alcohol | 2.5 | 1.57 | 1.02 | 0.37 | 10.8 |
Tributyl phosphate | Canola oil | 15 | 1.43 | 1.04 | 0.00 | 8.24 |
Oleyl alcohol | 12.5 | 1.74 | 0.92 | 0.24 | 13.1 | |
25 | 3.29 | 2.60 | 0.47 | 16.2 | ||
PPG1000 | 12.5 | 8.06 | 14.1 | 1.54 | 23.8 | |
Sunflower oil FAME | 5 | 0.91 | 0.18 | 0.04 | 1.88 | |
12.5 | 2.27 | 0.82 | 0.17 | 1.87 | ||
CYTOP 503 | Canola oil | 12.5 | 5.99 | 17.7 | 2.05 | 11.7 |
Oleyl alcohol | 12.5 | 2.34 | 1.43 | 0.36 | 12.1 | |
PPG1000 | 12.5 | 9.53 | 19.3 | 2.60 | 23.9 | |
Sunflower oil FAME | 5 | 2.65 | 2.03 | 0.65 | 2.29 | |
12.5 | 7.90 | 14.0 | 2.25 | 3.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Brabander, P.; Uitterhaegen, E.; Verhoeven, E.; Vander Cruyssen, C.; De Winter, K.; Soetaert, W. In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection. Fermentation 2021, 7, 26. https://doi.org/10.3390/fermentation7010026
De Brabander P, Uitterhaegen E, Verhoeven E, Vander Cruyssen C, De Winter K, Soetaert W. In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection. Fermentation. 2021; 7(1):26. https://doi.org/10.3390/fermentation7010026
Chicago/Turabian StyleDe Brabander, Pieter, Evelien Uitterhaegen, Ellen Verhoeven, Cedric Vander Cruyssen, Karel De Winter, and Wim Soetaert. 2021. "In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection" Fermentation 7, no. 1: 26. https://doi.org/10.3390/fermentation7010026
APA StyleDe Brabander, P., Uitterhaegen, E., Verhoeven, E., Vander Cruyssen, C., De Winter, K., & Soetaert, W. (2021). In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection. Fermentation, 7(1), 26. https://doi.org/10.3390/fermentation7010026