Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Sampling of Retail Galotyri-Like Cheese Products
2.2. Cheese Analyses
2.3. Isolation and Biochemical Characterization of the Cheese LAB Biota
2.4. DNA Extraction from Cheese Samples and 16S rRNA Sequencing of Microbiota
3. Results and Discussion
3.1. Microbiological Attributes and pH Variation of Retail Galotyri-Like Acid-Curd Cheeses
3.2. Biochemical Characterization and Distribution of the LAB Biota in Galotyri-Like Cheeses
3.3. Bacterial Communities Estimated by 16S rRNA Amplicon Sequencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guinee, T.P.; Pudja, P.D.; Farkye, N.Y. Fresh acid-curd cheese varieties. In Cheese Chemistry, Physics and Microbiology, 1st ed.; Springer: Boston, MA, USA, 1993; Volume 2, pp. 363–419. [Google Scholar]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese-A review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Ho, T.M.; Howes, T.; Bhandari, B.R. Methods to extend the shelf-life of cottage cheese—A review. Int. J. Dairy Technol. 2016, 69, 313–327. [Google Scholar] [CrossRef]
- Bello, B.D.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P.D.; Hill, C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int. J. Food Microbiol. 2012, 153, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Cheeses of protected denomination of origin. In Hellenic Code of Food and Beverages, 3rd ed.; Ministry of Finance, National Publishing Office: Athens, Greece, 2014; Article 83D; pp. 14–59. [Google Scholar]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological characteristics of Greek traditional cheeses. Small Rum. Res. 2011, 101, 17–32. [Google Scholar] [CrossRef]
- Xanthopoulos, V.; Polychroniadou, A.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Characteristics of Anevato cheese made from raw or heat-treated goat milk inoculated with a lactic starter. Leben. Wissen. Technol. 2000, 33, 483–488. [Google Scholar] [CrossRef]
- Karali, F.; Georgala, A.; Massouras, T.; Kaminarides, S. Volatile compounds and lipolysis levels of Kopanisti, a traditional Greek raw milk cheese. J. Sci. Food Agric. 2013, 93, 1845–1851. [Google Scholar] [CrossRef]
- Papageorgiou, D.K.; Abrahim, A.; Bori, M.; Doundounakis, S. Chemical and Bacteriological Characteristics of Pichtogalo Chanion Cheese and Mesophilic Starter Cultures for Its Production. J. Food Prot. 1998, 61, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Kakouri, A. Microbial and safety qualities of PDO Galotyri cheese manufactured at the industrial or artisan scale in Epirus, Greece. Ital. J. Food Sci. 2007, 19, 91–99. [Google Scholar]
- Samelis, J.; Kakouri, A. Major technological differences between an industrial-type and five artisan-type Greek PDO Galotyri market cheeses as revealed by great variations in their lactic acid microbiota. AIMS Agric. Food 2019, 4, 685–710. [Google Scholar] [CrossRef]
- Sameli, N.; Skandamis, P.N.; Samelis, J. Application of Enterococcus faecium KE82, an enterocin A-B-P-producing strain, as an adjunct culture enhances inactivation of Listeria monocytogenes during traditional protected designation of origin Galotyri processing. J. Food Prot. 2021, 84, 87–98. [Google Scholar] [CrossRef]
- Rogga, K.; Samelis, J.; Kakouri, A.; Katsiari, M.; Savvaidis, I.; Kontominas, M. Survival of Listeria monocytogenes in Galotyri, a traditional Greek soft acid-curd cheese, stored aerobically at 4 °C and 12 °C. Int. Dairy J. 2005, 15, 59–67. [Google Scholar] [CrossRef]
- Joishy, T.K.; Dehingia, M.; Khan, M.R. Bacterial diversity and metabolite profiles of curd prepared by natural fermentation of raw milk and back sloping of boiled milk. World J. Microbiol. Biotechnol. 2019, 35, 102. [Google Scholar] [CrossRef]
- Katsiari, M.; Kondyli, E.; Voutsinas, L. Τhe quality of Galotyri-type cheese made with different starter cultures. Food Control 2009, 20, 113–118. [Google Scholar] [CrossRef]
- Kondyli, E.; Katsiari, M.; Voutsinas, L. Chemical and sensory characteristics of Galotyri-type cheese made using different procedures. Food Control. 2008, 19, 301–307. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavor compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Kondyli, E.; Massouras, T.; Katsiari, M.; Voutsinas, L. Lipolysis and volatile compounds of Galotyri-type cheese made using different procedures. Small Rumin. Res. 2013, 113, 432–436. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The Microfloras of Traditional Greek Cheeses. Microbiol. Spectr. 2014, 2, CM-0009-2012. [Google Scholar]
- Ivanov, I.; Petrov, K.; Lozanov, V.; Hristov, I.; Wu, Z.; Liu, Z.; Petrova, P. Bioactive compounds produced by the accompanying microflora in Bulgarian yogurt. Processes 2021, 9, 114. [Google Scholar] [CrossRef]
- Samelis, J.; Argyri, A.; Doulgeraki, A.; Koukkou, A.I.; Skandamis, P.; Athanasoulas, A.; Pappas, D.; Chorianopoulos, N. De-velopment of novel biofunctional foods and total quality enhancement of traditional dairy products by suitable management of their microbial ecology—BIO TRUST. In Proceedings of the 26th International ICFMH Conference FoodMicro, Freie Universität, Berlin, Germany, 3–6 September 2018; Volume P1.62, p. 152. [Google Scholar]
- Noutsopoulos, D.; Kakouri, A.; Kartezini, E.; Pappas, D.; Hatziloukas, E.; Samelis, J. Growth, nisA gene expression and in situ activity of novel Lactococcus lactis subsp. cremoris costarter culture in commercial hard cheese production. J. Food Prot. 2017, 80, 2137–2146. [Google Scholar] [CrossRef]
- Tamine, A.Y.; Robinson, R.K. Microbiology of yoghurt starter cultures. In Yoghurt Science and Technology, 1st ed.; Tamine, A.Y., Robinson, R.K., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 276–294. [Google Scholar]
- Vandera, E.; Kakouri, A.; Koukkou, A.I.; Samelis, J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int. J. Food Microbiol. 2019, 290, 15–26. [Google Scholar] [CrossRef]
- Samelis, J.; Lianou, A.; Kakouri, A.; Delbès, C.; Rogelj, I.; Bogovič-Matijašić, B.; Montel, M.-C. Changes in the Microbial Composition of Raw Milk Induced by Thermization Treatments Applied Prior to Traditional Greek Hard Cheese Processing. J. Food Prot. 2009, 72, 783–790. [Google Scholar] [CrossRef]
- Hammes, W.P.; Hertel, C. Genus I Lactobacillus Beijernick 1901, 212AL. In Bergey’s Manual of Systematic Bacteriology, the Fir-micutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 465–511. [Google Scholar]
- Holzapfel, W.H.; Bjorkroth, J.A.; Dicks, L.M.T. Genus I Leuconostoc van Tieghem 1878, 198AL. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 624–635. [Google Scholar]
- Manero, A.; Blanch, A.R. Identification of Enterococcus spp. with a biochemical key. Appl. Environ. Microbiol. 1999, 65, 4425–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn Diagrams. 2007. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 20 November 2013).
- Tofalo, R.; Fusco, V.; Böhnlein, C.; Kabisch, J.; Logrieco, A.F.; Habermann, D.; Cho, G.-S.; Benomar, N.; Abriouel, H.; Schmidt-Heydt, M.; et al. The life and times of yeasts in traditional food fermentations. Crit. Rev. Food Sci. Nutr. 2019, 60, 3103–3132. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Kakouri, A.; Pappa, E.C.; Matijašić, B.B.; Georgalaki, M.D.; Tsakalidou, E.; Rogelj, A. Microbial Stability and Safety of Traditional Greek Graviera Cheese: Characterization of the Lactic Acid Bacterial Flora and Culture-Independent Detection of Bacteriocin Genes in the Ripened Cheeses and Their Microbial Consortia. J. Food Prot. 2010, 73, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Vandera, E.; Parapouli, M.; Kakouri, A.; Koukkou, A.-I.; Hatziloukas, E.; Samelis, J. Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol. 2020, 86, 103335. [Google Scholar] [CrossRef] [PubMed]
- Bottari, B.; Levante, A.; Neviani, E.; Gatti, M. How the Fewest Become the Greatest. L. casei’s Impact on Long Ripened Cheeses. Front. Microbiol. 2018, 9, 2866. [Google Scholar] [CrossRef] [Green Version]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Gobbetti, M.; de Angelis, M.; di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, D.; Fitzgerald, G.F.; McAuliffe, O. From field to fermentation: The origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol. 2015, 47, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Parapouli, M.; Delbès-Paus, C.; Kakouri, A.; Koukkou, A.-I.; Montel, M.-C.; Samelis, J. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. lactis subsp. Cremoris Genotype and an L. lactis subsp. Lactis Phenotype, Isolated from Greek Raw Milk. Appl. Environ. Microbiol. 2013, 79, 3476–3484. [Google Scholar] [CrossRef] [Green Version]
- de Vos, W.M. Metabolic engineering of sugar catabolism in lactic acid bacteria. Ant. Leeuwen. 1996, 70, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, E.E.; van den Bogaard, P.T.C.; Catzeddu, P.; Kuipers, O.P.; de Vos, W.M. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J. Bacteriol. 2001, 183, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Giaretta, S.; Treu, L.; Vendramin, V.; Duarte, V.D.S.; Tarrah, A.; Campanaro, S.; Corich, V.; Giacomini, A. Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose. Front. Microbiol. 2018, 9, 1765. [Google Scholar] [CrossRef] [Green Version]
- Samelis, J.; Kakouri, A. Cell Growth Density and Nisin a Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors. J. Food Prot. 2020, 83, 542–551. [Google Scholar] [CrossRef]
- Pintado, M.E.; Macedo, A.C.; Malcata, F.X. Review: Technology, chemistry and microbiology of whey cheeses. Food Sci. Technol. Int. 2001, 7, 105–116. [Google Scholar] [CrossRef]
- Perin, L.M.; Sardano, M.L.S.; Nero, L.A.; Neviani, E.; Gatti, M. Bacterial ecology of artisanal Minas cheeses assessed by cul-ture-dependent and independent methods. Food Microbiol. 2017, 65, 160–169. [Google Scholar] [CrossRef]
- Manolopoulou, E.; Sarantinopoulos, P.; Zoidou, E.; Aktypis, A.; Moschopoulou, E.; Kandarakis, I.G.; Anifantakis, M.E. Evo-lution of microbial populations during traditional Feta cheese manufacture and ripening. Int. J. Food Microbiol. 2003, 82, 153–161. [Google Scholar] [CrossRef]
- Spyrelli, E.D.; Stamatiou, A.; Tassou, C.C.; Nychas, G.-J.E.; Doulgeraki, A.I. Microbiological and Metagenomic Analysis to Assess the Effect of Container Material on the Microbiota of Feta Cheese during Ripening. Fermentation 2020, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.P.A.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended dscritption of the genus Lactobacillus Beijerinck1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.; Morgan, S.M.; Ross, R.P.; Hill, C. Elevated Enzyme Release from Lactococcal Starter Cultures on Exposure to the Lantibiotic Lacticin 481, Produced by Lactococcus lactis DPC5552. J. Dairy Sci. 2002, 85, 2130–2140. [Google Scholar] [CrossRef] [Green Version]
- Lortal, S.; Chapot-Chartier, M.-P. Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int. Dairy J. 2005, 15, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Quigley, L.; O’ Sullivan, O.; Beresford, T.P.; Ross, P.R.; Fitzgerald, G.F.; Cotter, P.D. A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese. J. Appl. Microbiol. 2012, 113, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.-J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef]
Microbial Group | Enumeration Medium/ Incubation Conditions | Cheese Batch A | Cheese Batch B | Cheese Batch C | Cheese Batch D | Cheese Batch E | Mean ± SD Values |
---|---|---|---|---|---|---|---|
Total viable cheese biota counts | Milk Plate Count agar (MPCA)/37 °C; 48–72 h; aerobically | 8.60 | 8.59 | 7.78 | 6.89 | 7.94 | 7.96 ± 0.70 |
Total mesophilic LAB | MRS agar/30 °C; 72 h; Aerobically | 7.72 | 7.49 | 7.32 | 7.00 | 8.01 | 7.51 ± 0.38 |
Total thermophilic LAB | MRS agar/45 °C; 48 h; anaerobically (in Gas-Pack jars) | 7.82 | 7.13 | 5.15 | 7.19 | 6.43 | 6.74 ± 1.02 |
Total mesophilic dairy LAB (presumptive lactococci) | M17 agar/22 °C; 72 h, aerobically | 7.87 | 7.54 | 7.74 | 7.04 | 7.84 | 7.61 ± 0.34 |
Total thermophilic dairy LAB (presumptive streptococci) | M17 agar/42 °C; 48 h; aerobically | 8.27 | 8.62 | 7.68 | 7.34 | 8.82 | 8.15 ± 0.62 |
Enterococci | Slanetz and Bartley (SB) agar/37 °C; 48 h; aerobically | 6.60 | 6.78 | 6.02 | 6.34 | 6.58 | 6.46 ± 0.29 |
Total staphylococci | Baird–Parker agar with egg yolk tellurite/37 °C; 48 h; aerobically | <2.00 | <2.00 | <2.00 | <2.00 | <2.00 | <2.00 |
Coagulase-positive staphylococci | Baird–Parker agar with RFP/37 °C; 18–24 h; aerobically | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Coliforms | Violet Red Bile (VRB) agar/37 °C; 24 h; double-layered | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
Pseudomonas-like bacteria | Cephalothin–Fucidin–Cetrimide (CFC) agar; 25 °C; 48 h; aerobically | <2.00 | <2.00 | <2.00 | <2.00 | <2.00 | <2.00 |
Yeasts | Rose Bengal Chloramphenicol (RBC) agar/25 °C; 5 d; aerobically | 6.13 | 5.96 | 6.92 | 5.96 | 5.81 | 6.16 ± 0.44 |
Cheese pH | 3.84 | 4.09 | 3.91 | 4.28 | 4.44 | 4.11 ± 0.25 |
LAB Genus/Subgenus | Basic Differentiating Characteristics | Cheese Batch | Total Isolates (% Isolation Frequency) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MA | CO2 | NH3 | 15 °C | 45 °C | 6.5% | KAA | A | B | C | D | E | ||
Mesophilic, facultative heterofermentative Lactobacillus | R | − | − | + | −/V | +/++ | −/+ | 7 | 9 | 0 | 15 | 3 | 34 (23.4) |
Thermophilic, obligatory homofermentative Lactobacillus | R | − | − | − | + | − | − | 5 | 5 | 0 | 5 | 0 | 15 (10.3) |
Lactococcus (arginine-negative) | C | − | − | + | − | − | − | 1 | 0 | 10 | 0 | 0 | 11 (7.6) |
Lactococcus (arginine-positive) | C | − | + | + | −/V | −/+ | − | 0 | 0 | 2 | 0 | 1 | 3 (2.1) |
Thermophilic Streptococcus | LC | − | − | − | + | − | −/V | 10 | 4 | 2 | 2 | 5 | 23 (15.9) |
Enterococcus | C | − | + | + | + | ++ | ++ | 4 | 10 | 14 | 5 | 11 | 44 (30.3) |
Leuconostoc-like bacteria | CB | + | − | + | −/V | + | − | 3 | 1 | 0 | 0 | 9 | 13 (9.0) |
Obligatory heterofermentative Lactobacillusor Weissella (arginine-positive) | R | + | + | + | −/V | V | V | 0 | 1 | 0 | 0 | 1 | 2 (1.4) |
Total LAB isolates | 30 | 30 | 28 | 27 | 30 | 145 |
LAB Genus/Subgenus | Growth/Isolation Agar Medium | ||||||
---|---|---|---|---|---|---|---|
MPCA/ 37 °C | M17/ 22 °C | M17/ 42 °C | MRS/ 30 °C | MRS/ 45 °C | SB/ 37 °C | Total Isolates | |
Mesophilic Lactobacillus | 6 | 11 | 3 | 11 | − | 3 | 34 |
Thermophilic Lactobacillus | − | − | − | − | 15 | − | 15 |
Lactococcus | 4 | 5 | 2 | 3 | − | − | 14 |
Streptococcus | 6 | − | 17 | − | − | − | 23 |
Enterococcus | 4 | 3 | 3 | 2 | 10 | 22 | 44 |
Leuconostoc-like bacteria | 2 | 4 | − | 7 | − | − | 13 |
Heterofermentative Lactobacillus | 1 | − | − | 1 | − | − | 2 |
Total LAB isolates | 23 | 23 | 25 | 24 | 25 | 25 | 145 |
Non-LAB (catalase +) bacteria | − | 1 | − | − | − | − | 1 |
Yeasts | 2 | 1 | − | 1 | − | − | 4 |
Total cheese isolates | 25 | 25 | 25 | 25 | 25 | 25 | 150 |
Biochemical Test | Species Identification (Biotypes) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Enterococcus faecium | Enterococcus faecalis | ||||||||
Α1 | Α2 | Α3 | Α4 | Β1 | Β2 | Β3 | Β4 | Β5 | |
Fermentation of: | |||||||||
Maltose | + | + | + | + | + | + | + | + | + |
Mannitol | + | + | + | + | + | + | + | + | − |
Lactose | + | + | + | + | + | + | + | + | + |
Ribose | + | + | + | + | + | + | + | + | + |
l-Arabinose | + | + | + | + | − | − | − | − | − |
Xylose | − | − | − | − | − | − | − | − | − |
Raffinose | − | − | − | + | − | − | 1/2 | + | 2/6 |
Melibiose | 8/9 | 10/11 | − | + | − | − | + | + | − |
Sucrose | + | − | − | + | + | − | + | + | + |
Cellobiose | + | + | + | + | + | + | + | + | + |
Trehalose | + | + | − | + | + | + | + | + | + |
Galactose | + | + | + | + | + | + | + | + | + |
Sorbitol | − | − | − | + | + | + | + | − | 5/6 |
Melezitose | ΝΤ | ΝΤ | − | − | ΝΤ | ΝΤ | ΝΤ | + | ΝΤ |
Total No of Isolates | 9 | 11 | 3 | 1 | 8 | 2 | 2 | 2 | 6 |
Batch A | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Batch B | 1 | 2 | 3 | 0 | 0 | 0 | 1 | 2 | 1 |
Batch C | 0 | 3 | 0 | 0 | 7 | 2 | 1 | 0 | 1 |
Batch D | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Batch E | 3 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 3 |
Biochemical Test | Group Identification (Subgroups/Biotypes) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mesophilic Lactobacillus | Lactococcus | Leuconostoc | Lactobacillus (Gas-Forming) | ||||||||
C1 | C2 | C3 | C4 | D1 | D2 | D3 | E1 | E2 | E3 | E4 | |
CO2 from glucose | − | − | − | − | − | − | − | + | + | + | + |
ΝΗ3 from arginine | − | − | − | − | − | − | + | − | − | + | + |
Fermentation of: | |||||||||||
Maltose | + | + | + | + | + | + | + | 8/12 | + | + | + |
Mannitol | + | + | + | + | − | + | + | 2/12 | (+)d | − | + |
Lactose | + | + | + | + | + | + | + | + | + | + | − |
Ribose | + | + | + | + | 4/5 | 2/6 | + | − | + | + | + |
l-Arabinose | − | − | − | + | − | − | − | 4/12 | + | + | + |
Xylose | − | − | − | − | − | − | − | + | + | + | + |
Raffinose | + | − | − | − | − | − | − | 9/12d | − | − | − |
Melibiose | + | − | + | + | − | − | − | + | + | − | + |
Sucrose | + | + | + | + | − | + | 1/3 | + | − | − | − |
Cellobiose | + | + | + | + | ΝΤ | ΝΤ | ΝΤ | ΝΤ | − | − | + |
Trehalose | + | + | + | + | + | + | + | + | − | − | − |
Galactose | + | + | + | + | + | + | + | + | + | + | + |
Sorbitol | 4/17 | 1/8 | 4/8 | − | − | − | − | − | − | − | − |
Melezitose | + | + | + | + | ΝΤ | ΝΤ | ΝΤ | ΝΤ | − | − | − |
Total No of Isolates | 17 | 8 | 8 | 1 | 5 | 6 | 3 | 12 | 1 | 1 | 1 |
Batch A | 0 | 3 | 4 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 |
Batch B | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Batch C | 0 | 0 | 0 | 0 | 4 | 6 | 2 | 0 | 0 | 0 | 0 |
Batch D | 13 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Batch E | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 8 | 1 | 0 | 1 |
Biochemical Test | Group Identification (Subgroups/Biotypes) | |||||
---|---|---|---|---|---|---|
Thermophilic Lactobacillus sp. | Thermophilic Streptococcus sp. | |||||
Ζ1 | Ζ2 | Η1 | Η2 | Η3 | Η4 | |
Fermentation of: | ||||||
Maltose | − | 5/7 | (2/20) | + | + | + |
Mannitol | − | + | − | + | + | + |
Lactose | + | + | + | + | + | + |
Ribose | − | 4/7 | (4/20) | + | + | + |
l-Arabinose | − | 3/7 | − | + | − | − |
Xylose | − | − | − | − | − | − |
Raffinose | − | − | − | + | − | − |
Melibiose | − | 1/7 | − | + | + | − |
Sucrose | 1/8 | 4/7 | + | + | + | + |
Cellobiose | ΝΤ | ΝΤ | − | + | − | + |
Trehalose | 2/8 | 6/7 | − | + | + | + |
Galactose | − | + | (2/20) | + | − | + |
Sorbitol | − | − | − | − | − | − |
Melezitose | − | − | − | + | + | + |
Total No of Isolates | 8 | 7 | 20 | 1 | 1 | 1 |
Batch A | 3 | 2 | 10 | 0 | 0 | 0 |
Batch B | 3 | 2 | 1 | 1 | 1 | 1 |
Batch C | 0 | 0 | 2 | 0 | 0 | 0 |
Batch D | 2 | 3 | 2 | 0 | 0 | 0 |
Batch E | 0 | 0 | 5 | 0 | 0 | 0 |
Bacterial Genus or Species | Cheese Batch A | Cheese Batch B | ||
---|---|---|---|---|
RPD (%) | Relative Abundance (%) | RPD (%) | Relative Abundance (%) | |
Streptococcus | 66.56 | 13.69 | 58.47 | 26.81 |
Streptococcus thermophilus | 66.56 | 11.03 | 14.62 | 17.75 |
Lactobacillus | 26.31 | 44.20 | 23.74 | 30.69 |
Lactobacillus delbrueckii | 16.60 | 43.62 | 3.24 | 29.40 |
Other (mesophilic) Lactobacillus | 9.71 | 0.58 | 20.50 | 1.29 |
Lactococcus | 1.58 | 17.81 | ND | 18.72 |
Lactococcus lactis | 1.58 | 5.05 | ND | 7.82 |
Leuconostoc | 4.75 | 0.56 | 0.23 | 0.07 |
Enterococcus | 0.80 | 0.03 | 17.56 | 1.28 |
Enterobacteriaceae | ND | 2.48 | ND | 17.30 |
Vibrionaceae | ND | 3.96 | ND | 0.13 |
Vibrio | ND | 1.49 | ND | 0.00 |
Salinivibrio | ND | 4.65 | ND | 0.00 |
Shewanellaceae | ND | 3.73 | ND | 0.09 |
Other bacteria | ND | 8.89 | ND | 4.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samelis, J.; Doulgeraki, A.I.; Bikouli, V.; Pappas, D.; Kakouri, A. Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product. Fermentation 2021, 7, 67. https://doi.org/10.3390/fermentation7020067
Samelis J, Doulgeraki AI, Bikouli V, Pappas D, Kakouri A. Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product. Fermentation. 2021; 7(2):67. https://doi.org/10.3390/fermentation7020067
Chicago/Turabian StyleSamelis, John, Agapi I. Doulgeraki, Vasiliki Bikouli, Dimitrios Pappas, and Athanasia Kakouri. 2021. "Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product" Fermentation 7, no. 2: 67. https://doi.org/10.3390/fermentation7020067
APA StyleSamelis, J., Doulgeraki, A. I., Bikouli, V., Pappas, D., & Kakouri, A. (2021). Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product. Fermentation, 7(2), 67. https://doi.org/10.3390/fermentation7020067