Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cassava Pulp Fermented with Yeast Waste (CSYW)
2.2. Experimental Design and Dietary Treatments
2.3. Ruminal Fluid Donors and Substrates of Inoculum
2.4. In Vitro Gas Production and Fermentation Characteristics
2.5. Statistical Analysis
3. Results
3.1. Nutritional Composition of Feed
3.2. Gas Kinetics and Cumulative Gas Production
3.3. In Vitro Digestibility
3.4. Ruminal pH, Ammonia-Nitrogen (NH3-N) Concentration, and Microorganisms
3.5. Volatile Fatty Acid
4. Discussion
4.1. Chemical Composition
4.2. Effects on Gas Kinetics and In Vitro Digestibility
4.3. Ruminal Fermentation and Quantity of Rumen Microorganisms
4.4. Ruminal Volatile Fatty Acid (VFA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauynarong, N.; Elangovan, A.V.; Iji, P.A. The potential of cassava products in diets for poultry. World’s Poult. Sci. J. 2009, 65, 23–36. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Commodities Production. Food and Agriculture Organization of the United Nations Statistics Database. Available online: http://faostat.fao.org/ (accessed on 1 April 2021).
- Sugiharto, S. A review on fungal fermented cassava pulp as a cheap alternative feedstuff in poultry ration. J. World’s Poult. Res. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Rukboon, P.; Prasanpanich, S.; Kongmun, P. Effects of cassava pulp mixed with monosodium glutamate by-product (CPMSG) as a protein source in goat concentrate diet. Indian J. Anim. Res. 2019, 53, 774–779. [Google Scholar] [CrossRef]
- Sommai, S.; Ampapon, T.; Mapato, C.; Totakul, P.; Viennasay, B.; Matra, M.; Wanapat, M. Replacing soybean meal with yeast-fermented cassava pulp (YFCP) on feed intake, nutrient digestibilities, rumen microorganism, fermentation, and N-balance in Thai native beef cattle. Trop. Anim. Health Prod. 2020, 52, 2035–2041. [Google Scholar] [CrossRef]
- Pilajun, R.; Wanapat, M. Chemical composition and in vitro gas production of fermented cassava pulp with different types of supplements. J. Appl. Anim. Res. 2018, 46, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Polyorach, S.; Wanapat, M.; Cherdthong, A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas. J. Anim. Sci. 2014, 27, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Boonnop, K.; Wanapat, M.; Nontaso, N.; Wanapat, S. Enriching nutritive value of cassava root by yeast fermentation. Sci. Agric. 2009, 66, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Polyorach, P.; Wanapat, M.; Wanapat, S. Increasing protein content of cassava (Manihot esculenta, Crantz) using yeast in fermentation. Khon Kaen Agr. J. 2012, 40 (Suppl. S2), 178–182. [Google Scholar]
- Polyorach, S.; Wanapat, M.; Wanapat, S. Enrichment of protein content in cassava (Manihot esculenta Crantz) by supplementing with yeast for use as animal feed. Emirat. J. Food Agric. 2013, 25, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Laluce, C.; Leite, G.R.; Zavitoski, B.Z.; Zamai, T.T.; Ventura, R. Fermentation of Sugarcane Juice and Molasses for Ethanol Production. Sugarcane-Based Biofuels and Bioproducts; John Willey & Sons: Hoboken, NY, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Díaz, A.; Ranilla, M.J.; Saro, C.; Tejido, M.L.; Pérez-Quintana, M.; Carro, M. Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and Rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Supapong, C.; Khonkhaeng, B.; Wanapat, M.; Foiklang, S.; Polyorach, S. Inclusion of yeast waste as a protein source to replace soybean meal in concentrate mixture on ruminal fermentation and gas kinetics using in vitro gas production technique. Anim. Prod. Sci. 2019, 59, 1682–1688. [Google Scholar] [CrossRef]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of yeast waste fermented citric waste as a protein source to replace soybean meal and various roughage to concentrate ratios on in vitro rumen fermentation, gas kinetic, and feed digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Develop. 1988, 28, 7–55. [Google Scholar]
- Osaki, T.Y.; Kamiya, S.; Sawamura, S.; Kai, M.; Ozawa, A. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. J. Med. Microbiol. 1994, 40, 179–187. [Google Scholar] [CrossRef]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Life Science, New Mexico State University: Las Cruces, NM, USA, 1989; p. 188. [Google Scholar]
- Sommart, K.; Parker, D.S.; Rowlinson, P.; Wanapat, M. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Australas. J. Anim. Sci. 2000, 13, 1084–1093. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide, 4th ed.; Statistical Analysis Systems Institute, Version 9; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometerial Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Kamphaya, S.; Kumagai, H.; Angthong, W.; Narmseelee, R.; Bureenok, S. Effects of different ratios and storage periods of liquid brewer’s yeast mixed with cassava pulp on chemical composition, fermentation quality and in vitro ruminal fermentation. Asian-Australas. J. Anim. Sci. 2017, 30, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Chuelong, S.; Siriuthane, T.; Polsit, K.; Ittharat, S.; Koatdoke, U.; Cherdthong, A.; Khampa, S. Supplementation levels of palm oil in yeast (Saccharomyces cerevisiae) culture fermented cassava pulp on rumen fermentation and average daily gain in crossbred native cattle. Pak. J. Nutr. 2011, 10, 1115–1120. [Google Scholar] [CrossRef] [Green Version]
- Khampa, S.; Chaowarat, P.; Singhalert, R.; Wanapat, M. Supplementation of yeast fermented cassava chip as a replacement concentrate on rumen fermentation efficiency and digestibility on nutrients in cattle. Asian-Australas. J. Anim. Sci. 2009, 3, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Promkot, C.; Wanapat, M.; Mansathit, J. Effects of yeast fermented-cassava chip protein (YEFECAP) on dietary intake and milk production of Holstein crossbred heifers and cows during pre-and post-partum period. Livest. Sci. 2013, 154, 112–116. [Google Scholar] [CrossRef]
- Cherdthong, A.; Supapong, C. Improving the nutritive value of cassava bioethanol waste using fermented yeast as a partial replacement of protein source in dairy calf ration. Trop. Anim. Health Prod. 2019, 51, 2139–2144. [Google Scholar] [CrossRef]
- Hungate, R.E. The Rumen and Its Microbes; Academic Press: New York, NY, USA, 1966; p. 53. [Google Scholar]
- Habeeb, A.A.M. Importance of yeast in ruminants feeding on production and reproduction. Ecol. Evol. 2017, 2, 49. [Google Scholar]
- Tang, L.; Wang, W.; Zhou, W.; Cheng, K.; Yang, Y.; Liu, M.; Cheng, K.; Wang, W. Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae. Microb. Cell Factories. 2015, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Cherdthong, A. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffaloes. Cur. Microbiol. 2009, 58, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Bi, Y.; Zeng, S.; Zhang, R.; Diao, Q.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef]
- Fernando, S.C.; Purvis, H.; Najar, F.; Sukharnikov, L.; Krehbiel, C.; Nagaraja, T.; Roe, B.; Desilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [Green Version]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Rumen microbes and microbial protein synthesis in Thai native beef cattle fed with feed blocks supplemented with a urea–calcium sulphate mixture. Arch. Anim. Nutr. 2013, 67, 448–460. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian-Australas. J. Anim. Sci. 2012, 5, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Suntara, C.; Cherdthong, A.; Uriyapongson, S.; Wanapat, M.; Chanjula, P. Comparison effects of ruminal Crabtree-negative yeasts and Crabtree-positive yeasts for improving ensiled rice straw quality and ruminal digestion using in vitro gas production. J. Fungi 2020, 6, 109. [Google Scholar] [CrossRef]
- Terry, S.A.; Badhan, A.; Wang, Y.; Chaves, A.V.; McAllister, T.A. Fibre digestion by rumen microbiota—A review of recent metagenomic and metatranscriptomic studies. Can. J. Anim. Sci. 2019, 99, 678–692. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajun, R.; Khejornsart, P. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
- Gunun, P.; Gunun, N.; Wanapat, M.; Cherdthong, A.; Polyorach, S.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 2018, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Wanapat, M.; Cherdthong, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fermentation efficiency and nutrient digestibility in dairy steers fed on high concentrate diet. Anim. Feed Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian-Australas. J. Anim. Sci. 2013, 26, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed Intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Levels of CSYW (g/kg Dry Matter) | CSYW 1 | Rice Straw | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Cassava chip | 580 | 580 | 550 | 555 | 550 | ||
Rice bran | 120 | 150 | 147 | 122 | 120 | ||
Palm kernel meal, solvent | 80 | 80 | 113 | 135 | 143 | ||
Soybean meal | 180 | 113 | 75 | 37 | 0 | ||
CSYW 1 | 0 | 37 | 75 | 113 | 150 | ||
Mineral premix | 5 | 5 | 5 | 5 | 5 | ||
Urea | 10 | 10 | 10 | 8 | 7 | ||
Molasses | 10 | 10 | 10 | 10 | 10 | ||
Pure sulfur | 10 | 10 | 10 | 10 | 10 | ||
Salt | 5 | 5 | 5 | 5 | 5 | ||
Chemical composition | |||||||
Dry matter (g/kg) | 906 | 901 | 903 | 904 | 912 | 349 | 924 |
----g/kg of dry matter--- | |||||||
Organic matter | 958 | 930 | 915 | 901 | 902 | 845 | 86.5 |
Ash | 42 | 70 | 85 | 99 | 98 | 103 | 125 |
Crude protein | 143 | 141 | 141 | 140 | 140 | 537 | 23 |
Neutral detergent fiber | 150 | 207 | 236 | 258 | 272 | 243 | 755 |
Acid detergent fiber | 92 | 126 | 151 | 174 | 183 | 113 | 553 |
Item | SBM:CSYW | R:C | Gas Kinetics 1 | Cumulative Gas (96 h) mL/g DM Substrate | |||
---|---|---|---|---|---|---|---|
a | b | c | |a| + b | ||||
T1 | 100:0 | 70:30 | −3.05 | 70.12 | 0.03 | 67.07 | 144.82 |
T2 | 100:0 | 50:50 | −2.55 | 72.19 | 0.04 | 69.64 | 148.96 |
T3 | 100:0 | 30:70 | −0.36 | 69.54 | 0.04 | 69.18 | 143.66 |
T4 | 75:25 | 70:30 | −0.46 | 88.56 | 0.03 | 88.11 | 181.71 |
T5 | 75:25 | 50:50 | −1.73 | 80.80 | 0.04 | 79.06 | 166.18 |
T6 | 75:25 | 30:70 | −0.74 | 90.14 | 0.03 | 89.40 | 184.86 |
T7 | 50:50 | 70:30 | −0.85 | 93.54 | 0.02 | 92.69 | 191.66 |
T8 | 50:50 | 50:50 | −0.08 | 97.75 | 0.03 | 97.67 | 200.08 |
T9 | 50:50 | 30:70 | −0.95 | 88.48 | 0.04 | 87.53 | 181.54 |
T10 | 25:75 | 70:30 | 0.10 | 113.81 | 0.02 | 113.91 | 232.20 |
T11 | 25:75 | 50:50 | 0.00 | 105.68 | 0.03 | 105.68 | 215.94 |
T12 | 25:75 | 30:70 | −0.85 | 115.14 | 0.02 | 114.29 | 234.86 |
T13 | 0:100 | 70:30 | −0.11 | 123.06 | 0.03 | 122.95 | 250.70 |
T14 | 0:100 | 50:50 | 0.29 | 137.82 | 0.02 | 138.11 | 280.22 |
T15 | 0:100 | 30:70 | −0.22 | 119.29 | 0.02 | 119.07 | 243.16 |
SEM | 1.01 | 25.66 | 0.01 | 21.55 | 18.25 | ||
p-value | |||||||
SBM:CSYW | 1.75 | <0.01 | 0.17 | <0.01 | 0.05 | ||
R:C | 0.92 | 0.33 | 0.15 | 0.29 | 0.45 | ||
SBM:CSYW×R:C | 0.67 | 0.25 | 0.40 | 0.22 | 0.43 | ||
Average | |||||||
SBM:CSYW | 100:0 | −1.99 | 70.62 f | 0.04 | 68.63 f | 145.81 f | |
75:25 | −0.98 | 86.50 f | 0.03 | 85.52 ef | 177.58 ef | ||
50:50 | −0.63 | 93.26 e | 0.03 | 92.63 de | 191.09 e | ||
25:75 | −0.25 | 115.54 d | 0.03 | 111.29 d | 227.67 d | ||
0:100 | −0.02 | 126.72 d | 0.02 | 126.71 d | 258.03 d | ||
R:C ratio | 70:30 | −0.87 | 97.82 | 0.03 | 96.94 | 200.22 | |
50:50 | −0.82 | 98.85 | 0.03 | 98.03 | 202.28 | ||
30:70 | −0.63 | 96.52 | 0.03 | 95.98 | 197.61 |
Item | SBM:CSYW | R:C | IVDMD (g/kg) | IVNDFD (g/kg) | IVADFD (g/kg) |
---|---|---|---|---|---|
T1 | 100:0 | 70:30 | 440 | 608 | 234 |
T2 | 100:0 | 50:50 | 549 | 613 | 210 |
T3 | 100:0 | 30:70 | 634 | 637 | 283 |
T4 | 75:25 | 70:30 | 509 | 557 | 155 |
T5 | 75:25 | 50:50 | 529 | 566 | 239 |
T6 | 75:25 | 30:70 | 545 | 633 | 293 |
T7 | 50:50 | 70:30 | 502 | 575 | 174 |
T8 | 50:50 | 50:50 | 484 | 580 | 227 |
T9 | 50:50 | 30:70 | 601 | 624 | 276 |
T10 | 25:75 | 70:30 | 427 | 570 | 202 |
T11 | 25:75 | 50:50 | 502 | 573 | 201 |
T12 | 25:75 | 30:70 | 647 | 615 | 185 |
T13 | 0:100 | 70:30 | 456 | 430 | 200 |
T14 | 0:100 | 50:50 | 512 | 435 | 187 |
T15 | 0:100 | 30:70 | 576 | 512 | 231 |
SEM p-value | 5.39 | 3.33 | 5.31 | ||
SBM:CSYW | 0.26 | <0.01 | 0.92 | ||
R:C | <0.01 | 0.50 | <0.01 | ||
SBM:CSYW×R:C | 0.06 | 0.14 | 0.06 | ||
Average | |||||
SBM:CSYW | 100:0 | 541 | 619 a | 222 | |
75:25 | 528 | 585 a | 197 | ||
50:50 | 529 | 593 a | 201 | ||
25:75 | 522 | 586 a | 202 | ||
0:100 | 515 | 459 b | 194 | ||
R:C ratio | 70:30 | 467 b | 548 b | 193 b | |
50:50 | 515 b | 553 b | 213 b | ||
30:70 | 600 a | 604 a | 253 a |
Item | SBM:CSYW | R:C | pH | NH3-N (mg/dL) | Bacteria (×107 cells/mL) | Protozoa (×105 cells/mL) | Fungal Zoospore (×104 cells/mL) |
---|---|---|---|---|---|---|---|
T1 | 100:0 | 70:30 | 7.04 | 15.79 | 25.50 | 2.05 | 7.00 |
T2 | 100:0 | 50:50 | 6.90 | 15.38 | 29.75 | 2.70 | 10.00 |
T3 | 100:0 | 30:70 | 6.87 | 16.24 | 44.50 | 4.30 | 11.25 |
T4 | 75:25 | 70:30 | 6.96 | 15.63 | 27.75 | 2.25 | 10.25 |
T5 | 75:25 | 50:50 | 6.92 | 17.04 | 27.25 | 2.20 | 11.50 |
T6 | 75:25 | 30:70 | 6.86 | 16.43 | 38.50 | 4.00 | 13.50 |
T7 | 50:50 | 70:30 | 6.95 | 17.43 | 31.20 | 1.55 | 7.50 |
T8 | 50:50 | 50:50 | 6.94 | 16.12 | 29.00 | 2.85 | 10.50 |
T9 | 50:50 | 30:70 | 6.88 | 15.90 | 33.00 | 4.10 | 11.25 |
T10 | 25:75 | 70:30 | 7.10 | 16.27 | 26.00 | 1.90 | 10.50 |
T11 | 25:75 | 50:50 | 6.94 | 17.11 | 29.75 | 2.25 | 12.00 |
T12 | 25:75 | 30:70 | 6.80 | 16.09 | 34.75 | 4.50 | 15.00 |
T13 | 0:100 | 70:30 | 7.03 | 16.29 | 18.75 | 2.15 | 8.75 |
T14 | 0:100 | 50:50 | 6.91 | 15.95 | 19.75 | 2.50 | 9.00 |
T15 | 0:100 | 30:70 | 6.81 | 17.89 | 32.15 | 2.75 | 9.50 |
SEM | 0.07 | 0.66 | 3.06 | 0.70 | 2.07 | ||
p-value SBM:CSYW | 0.41 | 0.49 | <0.05 | 0.70 | 0.22 | ||
R:C | 0.06 | 0.86 | <001 | <001 | 0.07 | ||
SBM:CSYW×R:C | 0.09 | 0.45 | 0.34 | 0.42 | 0.99 | ||
Average | |||||||
SBM:CSYW | 100:0 | 6.94 | 15.80 | 33.25 a | 3.02 | 9.99 | |
75:25 | 6.91 | 16.37 | 31.17 a | 2.82 | 9.42 | ||
50:50 | 6.92 | 16.48 | 31.07 a | 2.83 | 11.75 | ||
25:75 | 6.94 | 16.49 | 30.17 a | 2.88 | 9.75 | ||
0:100 | 6.92 | 16.71 | 23.55 b | 2.47 | 12.50 | ||
R:C ratio | 70:30 | 7.02 | 16.28 | 25.84 b | 1.98 b | 9.08 | |
50:50 | 6.92 | 16.32 | 27.10 b | 2.50 b | 8.80 | ||
30:70 | 6.84 | 16.51 | 36.58 a | 3.93 a | 10.60 |
Item | SBM:CSYW | R:C | Total VFA (mmol/L) | Molar Proportions of VFA (mmol/L) | C2:C3 Ratio | ||
---|---|---|---|---|---|---|---|
C2 | C3 | C4 | |||||
T1 | 100:0 | 70:30 | 64.36 | 71.03 | 15.63 | 10.56 | 4.55 |
T2 | 100:0 | 50:50 | 73.81 | 67.20 | 25.54 | 12.26 | 2.63 |
T3 | 100:0 | 30:70 | 79.11 | 61.46 | 27.56 | 14.86 | 2.23 |
T4 | 75:25 | 70:30 | 68.10 | 72.67 | 15.91 | 12.57 | 4.57 |
T5 | 75:25 | 50:50 | 64.95 | 74.16 | 26.95 | 11.08 | 2.75 |
T6 | 75:25 | 30:70 | 77.50 | 74.23 | 24.28 | 9.95 | 3.06 |
T7 | 50:50 | 70:30 | 68.56 | 71.00 | 20.41 | 10.50 | 3.48 |
T8 | 50:50 | 50:50 | 69.97 | 69.40 | 20.64 | 11.53 | 3.36 |
T9 | 50:50 | 30:70 | 69.54 | 64.94 | 25.68 | 10.94 | 2.53 |
T10 | 25:75 | 70:30 | 67.17 | 65.89 | 20.75 | 10.55 | 3.17 |
T11 | 25:75 | 50:50 | 74.02 | 64.52 | 18.76 | 8.85 | 3.44 |
T12 | 25:75 | 30:70 | 66.02 | 70.78 | 26.82 | 12.27 | 2.64 |
T13 | 0:100 | 70:30 | 66.27 | 71.68 | 18.07 | 12.55 | 3.97 |
T14 | 0:100 | 50:50 | 66.97 | 66.35 | 21.00 | 9.74 | 3.16 |
T15 | 0:100 | 30:70 | 64.69 | 62.52 | 20.12 | 8.84 | 3.11 |
SEM | 3.19 | 3.82 | 1.41 | 1.99 | 0.67 | ||
p-value | |||||||
SBM:CSYW | 0.23 | 0.18 | 0.05 | 0.69 | 0.07 | ||
R:C | 0.11 | 0.34 | 0.01 | 0.83 | 0.70 | ||
SBM:CSYW×R:C | 0.08 | 0.58 | 0.09 | 0.61 | 1.00 | ||
Average | |||||||
SBM:CSYW | 100:0 | 72.43 | 66.56 | 22.91 a | 12.56 | 3.14 | |
75:25 | 70.19 | 73.69 | 22.38 a | 11.20 | 3.46 | ||
50:50 | 69.36 | 68.45 | 22.24 a | 10.99 | 3.12 | ||
25:75 | 69.07 | 67.06 | 22.11 a | 10.56 | 3.08 | ||
0:100 | 65.98 | 66.85 | 19.73 b | 10.37 | 3.41 | ||
R:C ratio | 70:30 | 66.89 | 70.45 | 18.74 c | 11.35 | 3.79 | |
50:50 | 69.94 | 68.33 | 22.58 b | 10.69 | 3.07 | ||
30:70 | 71.37 | 66.78 | 25.05 a | 11.37 | 2.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagaew, G.; Cherdthong, A.; Wongtangtintharn, S.; Wanapat, M.; Suntara, C. Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio. Fermentation 2021, 7, 196. https://doi.org/10.3390/fermentation7030196
Dagaew G, Cherdthong A, Wongtangtintharn S, Wanapat M, Suntara C. Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio. Fermentation. 2021; 7(3):196. https://doi.org/10.3390/fermentation7030196
Chicago/Turabian StyleDagaew, Gamonmas, Anusorn Cherdthong, Sawitree Wongtangtintharn, Metha Wanapat, and Chanon Suntara. 2021. "Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio" Fermentation 7, no. 3: 196. https://doi.org/10.3390/fermentation7030196
APA StyleDagaew, G., Cherdthong, A., Wongtangtintharn, S., Wanapat, M., & Suntara, C. (2021). Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio. Fermentation, 7(3), 196. https://doi.org/10.3390/fermentation7030196