Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agro-Industrial Waste and Microorganisms
2.2. Sample and Yeast Inoculation Preparations
2.2.1. YSC Initial Solution
2.2.2. Control Samples
2.2.3. Fermented Samples
2.3. Fermentation Kinetics
2.4. Analysis Methods
2.4.1. Growth Determination
2.4.2. Sugar Determination
2.4.3. Quantification of Purity of Bioethanol
2.4.4. Statistical Analysis
2.4.5. Bioethanol Waste: Vinasse
3. Results and Discussion
3.1. Chemical Composition of Pomace Waste
3.2. YSC Growth
3.3. Bioethanol Production
3.4. Sugar Concentration
3.5. A Comparison of Bioethanol Performance with Other Studies
3.6. Physiochemical Analysis of Vinasse
3.7. Production Potential in Chile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liew, F.M.; Köpke, M.; Simpson, S.D. Gas fermentation for commercial biofuels production. In Liquid, Gaseous and Solid Biofuels-Conversion Techniques; IntechOpen: London, UK, 2013; pp. 125–173. [Google Scholar]
- Evcan, E.; Tari, C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy 2015, 88, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.; Ríos, C.; Feijoo, G.; Moreira, M.T. Comparative evaluation of lignocellulosic biorefinery scenarios under a life-cycle assessment approach. Biofuels Bioprod. Biorefin. 2018, 12, 1047–1064. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Larroche, C.; Dussap, C.-G. Comprehensive assessment of 2G bioethanol production. Bioresour. Technol. 2020, 313, 123630. [Google Scholar] [CrossRef] [PubMed]
- Barakat, Y.; Awad, E.N.; Ibrahim, V. Fuel consumption of gasoline ethanol blends at different engine rotational speeds. Egypt. J. Pet. 2016, 25, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Duarte, N.; Rückert, V.; Teixeira, C.; Coelho, J. Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renew. Sustain. Energy Rev. 2021, 148, 111292. [Google Scholar]
- Rahman, S.; Fattah, I.R.; Ong, H.; Zamri, M. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies 2021, 14, 1766. [Google Scholar] [CrossRef]
- Razmovski, R.; Vučurović, V. Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 2012, 92, 1–8. [Google Scholar] [CrossRef]
- Baig, K.S.; Wu, J.; Turcotte, G. Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. Int. J. Energy Res. 2019, 43, 1411–1427. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Parmar, I.; Rupasinghe, H.V. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation. Bioresour. Technol. 2013, 130, 613–620. [Google Scholar] [CrossRef]
- Petrik, S.; Kádár, Z.; Márová, I. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass. Bioresour. Technol. 2013, 133, 370–377. [Google Scholar] [CrossRef]
- Domínguez-Bocanegra, A.R.; Torres-Muñoz, J.A.; López, R.A. Production of Bioethanol from agro-industrial wastes. Fuel 2015, 149, 85–89. [Google Scholar] [CrossRef]
- Roy, P.; Tokuyasu, K.; Orikasa, T.; Nakamura, N.; Shiina, T. A techno-economic and environmental evaluation of the life cycle of bioethanol produced from rice straw by RT-CaCCO process. Biomass Bioenergy 2012, 37, 188–195. [Google Scholar] [CrossRef]
- Galanopoulos, C.; Giuliano, A.; Barletta, D.; Zondervan, E. An integrated methodology for the economic and environmental assessment of a biorefinery supply chain. Chem. Eng. Res. Des. 2020, 160, 199–215. [Google Scholar] [CrossRef]
- Cristóbal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, J.; Martinez-Hernandez, E.; Amezcua-Allieri, M.A.; Aburto, J. Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition. Bioresour. Technol. Rep. 2019, 7, 100230. [Google Scholar] [CrossRef]
- Fundación para la Innovación Agraria (FIA), Ministerio de Agricultura, Chile. Serie Estudios para la Innovación FIA Estudio Estrategia de Desarrollo e Innovación para la Industria de Deshidratados en Chile frutas, Hortalizas y Hongos. 2019. Available online: http://www.fia.cl/download/estudios-fia/otros-estudios-tematicos/Estudio-FIA-deshidratados-en-chile.pdf (accessed on 10 September 2021).
- Pathania, S.; Sharma, N.; Handa, S. Immobilization of co-culture of Saccharomyces cerevisiae and Scheffersomyces stipitis in sodium alginate for bioethanol production using hydrolysate of apple pomace under separate hydrolysis and fermentation. Biocatal. Biotransform. 2017, 35, 450–459. [Google Scholar] [CrossRef]
- Jin, Q.; Quereshi, N.; Wang, H.; Hung, H. Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. Fuel 2019, 244, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Parmar, I.; Rupasinghe, H.V. Optimization of dilute acid-based pretreatment and application of laccase on apple pomace. Bioresour. Technol. 2012, 124, 433–439. [Google Scholar] [CrossRef]
- Ngadi, M.; Correia, L. Solid State Ethanol Fermentation of Apple Pomace as Affected by Moisture and Bioreactor Mixing Speed. J. Food Sci. 1992, 57, 667–670. [Google Scholar] [CrossRef]
- Patle, S.; Lal, B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett. 2007, 29, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Madejón, E.; Díaz, M.J.; López-Núñez, R.; Cabrera, F. Co-composting of sugarbeet vinasse: Influence of the organic matter nature of the bulking agents used. Bioresour. Technol. 2001, 76, 275–278. [Google Scholar] [CrossRef]
- Nandy, T.; Shastry, S.; Kaul, S. Wastewater management in a cane molasses distillery involving bioresource recovery. J. Environ. Manag. 2002, 65, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.M.; Borja, R.; Martí, A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 2003, 38, 1275–1284. [Google Scholar] [CrossRef]
- Gamboa, E.I.E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominguez-Maldonado, J.; Hernandez, G.; Alzate-Gaviria, L. Vinasses: Characterization and treatments. Waste Manag. Res. 2011, 29, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.O.; da Cunha, M.P.; Jesus, C.D.; Rocha, G.J.; Pradella, J.G.C.; Rossell, C.E.; Filho, R.M.; Bonomi, A. Second generation ethanol in Brazil: Can it compete with electricity production? Bioresour. Technol. 2011, 102, 8964–8971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhar, S.H.M.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Faik, A.A.M.; Rodrigues, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente; Gobierno de Chile. Contribución Determinada a Nivel Nacional (NDC) de Chile.; 2020. Available online: https://mma.gob.cl/wp-content/uploads/2020/04/NDC_Chile_2020_espan%CC%83ol-1.pdf (accessed on 14 September 2021).
- Ministerio del Medio Ambiente; Gobierno de Chile. Hoja de Ruta Nacional a la Economía Circular para un Chile sin Basura. 2020. Available online: https://economiacircular.mma.gob.cl/wp-content/uploads/2021/07/HOJA-DE-RUTA-PARA-UN-CHILE-CIRCULAR-AL-2040-ES-VERSION-ABREVIADA.pdf (accessed on 14 September 2021).
- Hanc, A.; Chadimova, Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 2014, 168, 240–244. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, Y.; Liu, X.; Huang, H. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting. Waste Manag. 2014, 34, 1595–1602. [Google Scholar] [CrossRef]
- Actis, G.; Luzzatti, A.; Marchesini, A.; Siragusa, N. Energetics and Technology of Biological Elimination of Wastes; Milazzo, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 163–171. [Google Scholar]
- Markovic, M.; Markov, S.; Grujić, O.; Mojović, L.; Kocic-Tanackov, S.; Vukasinovic, M.; Pejin, J. Microwave as a pre-treatment of triticale for bioethanol fermentation and utilization of the stillage for lactic acid fermentation. Biochem. Eng. J. 2014, 85, 132–138. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Student. Errors of Routine Analysis. Biometrika 1927, 19, 151–164. [Google Scholar] [CrossRef]
- Newman, D. The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 1939, 30, 20–30. [Google Scholar] [CrossRef]
- Keuls, M. The use of the “studentized range” in connection with an analysis of variance. Euphytica 1952, 1, 112–122. [Google Scholar] [CrossRef]
- Shim, G.B.A. Study on bio-ethanol extraction from fruit waste by simultaneous saccharification and fermentation. APEC Youth Sci. J. 2015, 7, 154–162. [Google Scholar]
- Official Methods of Analysis of AOAC INTERNATIONAL, 20th ed. 2016. Available online: http://www.aoac.org/aoac_prod_imis/AOAC/Publications/Official_Methods_of_Analysis/AOAC_Member/Publications/OMA/AOAC_Official_Methods_of_Analysis.aspx (accessed on 16 July 2021).
- DIN. Available online: http://www.din.de/de (accessed on 1 September 2021).
- 2006 ASHRAE Handbook—Refrigeration (I-P Edition); American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2006; Chapter 9; Available online: https://app.knovel.com/web/toc.v/cid:kpASHRAEH1/viewerType:toc/ (accessed on 15 July 2021).
- Vučurović, D.G.; Dodić, S.N.; Popov, S.D.; Dodić, J.M.; Grahovac, J.A. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresour. Technol. 2012, 104, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Barr-David, F.; Dodge, B.F. Vapor-Liquid Equilibrium at High Pressures. The Systems Ethanol-Water and 2-Propanol-Water. J. Chem. Eng. Data 1959, 4, 107–121. [Google Scholar] [CrossRef]
- Pacheco-Basulto, J.Á.; Hernández-McConville, D.; Barroso-Muñoz, F.O.; Hernández, S.; Segovia-Hernández, J.G.; Castro-Montoya, A.J.; Bonilla-Petriciolet, A. Purification of bioethanol using extractive batch distillation: Simulation and experimental studies. Chem. Eng. Process. 2012, 61, 30–35. [Google Scholar] [CrossRef]
- Conde-Mejía, C.; Jiménez-Gutiérrez, A.; Gómez-Castro, F.I. 26th European Symposium on Computer Aided Process Engineering; Kravanja, Z., Bogataj, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 38, pp. 373–378. [Google Scholar]
- ASTM D4806-21, Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel. ASTM International: West Conshohocken, PA, USA, 2021. Available online: www.astm.org (accessed on 20 July 2021).
- Park, S.H.; Yoon, S.H.; Lee, C.S. Bioethanol and gasoline premixing effect on combustion and emission characteristics in biodiesel dual-fuel combustion engine. Appl. Energy 2014, 135, 286–298. [Google Scholar] [CrossRef]
- Park, S.H.; Yoon, S.H.; Lee, C.S. HC and CO emissions reduction by early injection strategy in a bioethanol blended die-sel-fueled engine with a narrow angle injection system. Appl. Energy 2013, 107, 81–88. [Google Scholar] [CrossRef]
- Vargas, L.M.; Rico Ponce, H.; Vidales Fernandez, I.; Larios Guzmán, A.; Pedraza Santos, M.E.; Herrera Basurto, J.A. Complementos nutricionales para el rendimiento y nutrición del cultivo de melón con fertirriego y acolchado. Rev. Mex. Cienc. Agríc. 2010, 1, 5–15. [Google Scholar]
- Magyar, M.; da Costa Sousa, L.; Jin, M.; Sarks, C.; Balan, V. Conversion of apple pomace waste to ethanol at industrial rel-evant conditions. Appl. Microbiol. Biotechnol. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Islamova, Z.I.; Ogai, D.K.; Abramenko, O.I.; Lim, A.L.; Abduazimov, B.B.; Malikova, M.K.; Rakhmanberdyeva, R.K.; Khushbaktova, Z.A.; Syrov, V.N. Comparative Assessment of the Prebiotic Activity of Some Pectin Polysaccharides. Pharm. Chem. J. 2017, 51, 288–291. [Google Scholar] [CrossRef]
- Demiray, E.; Kut, A.; Karatay, S.E.; Dönmez, G. Usage of soluble soy protein on enzymatically hydrolysis of apple pomace for cost-efficient bioethanol production. Fuel 2021, 289, 119785. [Google Scholar] [CrossRef]
- Jahnavi, G.; Prashanthi, G.S.; Sravanthi, K.; Rao, L.V. Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of bioethanol. Renew. Sustain. Energy Rev. 2017, 73, 798–820. [Google Scholar] [CrossRef]
- Macrelli, S.; Mogensen, J.; Zacchi, G. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol. Biofuels 2012, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, B.; Zaiat, M.; Bonomi, A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew. Sustain. Energy Rev. 2015, 44, 888–903. [Google Scholar] [CrossRef]
- Paéz, G.; Muñoz, F.; Candelac, L.; Tamohc, K.; Valdes-Abelland, J. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Sci. Total Environ. 2016, 539, 410–419. [Google Scholar]
- Hach Company. TNT 822 Chemical Oxygen Demand DOC312.53.94135, 10th ed.; Hach Company: Loveland, CO, USA, 2019. [Google Scholar]
- Hach Company. Method 8043. Oxygen Demand, Biochemical DOC316.53.01200, 10th ed.; Hach Company: Loveland, CO, USA, 2017. [Google Scholar]
- Federation, W.E.; APH Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Hach Company. Method 10173. Organic Carbon, Total, DOC316.53.01094, 9th ed.; Hach Company: Loveland, CO, USA, 2014. [Google Scholar]
- Parsaee, M.; Kiani, M.K.D.; Karimi, K. A review of biogas production from sugarcane vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Janke, L.; Leite, A.; Nikolausz, M.; Schmidt, T.; Liebetrau, J.; Nelles, M.; Stinner, W. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing. Int. J. Mol. Sci. 2015, 16, 20685–20703. [Google Scholar] [CrossRef] [Green Version]
- Rulli, M.M.; Villegas, L.B.; Colin, V.L. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. J. Environ. Chem. Eng. 2020, 8, 104371. [Google Scholar] [CrossRef]
- Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.U.; Fontanetti, C.S. Sugarcane vinasse: Environmental implications of its use. Waste Manag. 2013, 33, 2752–2761. [Google Scholar] [CrossRef]
- Servicio Agrícola y Ganadero (SAG); Gobierno de Chile. Especificaciones Técnicas para la Utilización de riles de la Industria Vitivinícola en Suelos. Available online: https://www.google.com/search?q=Gu%C3%ADa+para+proyectos+de+industrias+vitivin%C3%ADcolas+que+aplican+riles+al+suelo.+Gobierno+de+Chile.&biw=1920&bih=937&sxsrf=ALeKk02NjKFvjYhP1dJ_5aYAIr8L-yiNFQ%3A1625069590990&ei=FpjcYLrWO5uOjLsP_uymiAM&oq=Gu%C3%ADa+para+proyectos+de+industrias+vitivin%C3%ADcolas+que+aplican+riles+al+suelo.+Gobierno+de+Chile.&gs_lcp=Cgdnd3Mtd2l6EANKBAhBGABQ-aUBWPmlAWCXsAFoAHAAeACAAWqIAcoBkgEDMS4xmAEAoAECoAEBqgEHZ3dzLXdpergBAcABAQ&sclient=gws-wiz&ved=0ahUKEwi6udL937_xAhUbB2MBHX62CTEQ4dUDCA4&uact=5# (accessed on 10 December 2020).
- Moraes, B.; Triolo, J.M.P.; Lecona, V.; Zaiat, M.; Sommer, S.G. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse. Bioresour. Technol. 2015, 190, 227–234. [Google Scholar] [CrossRef]
- ODEPA, Estudio Fruticultura Orgánica. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/03/EstudioFruticulturaOrganica2018_1.pdf (accessed on 15 December 2020).
- Mota, V.T.; dos Santos, F.S.; Amaral, M. Two-stage anaerobic membrane bioreactor for the treatment of Sugarcane vinasse: Assessment on biological activity and filtration performance. Bioresour. Technol. 2013, 146, 494–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, C.E.C.; de Souza, S.N.M.; Micuanski, V.C.; Azevedo, R.L. Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Parana State, Brazil. Renew. Sustain. Energy Rev. 2015, 48, 300–305. [Google Scholar] [CrossRef]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J. Environ. Sci. Health Part A 2017, 52, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, L.M.; Damiano, E.S.; Silva, E.L. Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogas production in fluidized bed reactor. J. Environ. Sci. Health Part A 2013, 48, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Abu Tayeh, H.; Najami, N.; Dosoretz, C.; Tafesh, A.; Azaizeh, H. Potential of bioethanol production from olive mill solid wastes. Bioresour. Technol. 2014, 152, 24–30. [Google Scholar] [CrossRef]
- Prasad, S.; Malav, M.K.; Kumar, S.; Singh, A.; Pant, D.; Radhakrishnan, S. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). Bioresour. Technol. Rep. 2018, 4, 50–56. [Google Scholar] [CrossRef]
- Wang, W.; Tan, X.; Imtiaz, M.; Wang, Q.; Miao, C.; Yuan, Z.; Zhuang, X. Rice straw pretreatment with KOH/urea for enhancing sugar yield and ethanol production at low temperature. Ind. Crops Prod. 2021, 170, 113776. [Google Scholar] [CrossRef]
- da Silva, A.L.; Castañeda-Ayarza, J.A. Macro-environment analysis of the corn ethanol fuel development in Brazil. Renew. Sustain. Energy Rev. 2021, 135, 110387. [Google Scholar] [CrossRef]
- Arvaniti, E.; Bjerre, A.; Schmidt, J.E. Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 2012, 39, 94–105. [Google Scholar] [CrossRef]
Properties | Unit | Value | Determination Method |
---|---|---|---|
Moisture content (wb) a | Mass % | 86.90 ± 0.1 | Oven method—AOAC 945.15 [41] |
Proteins (db) b | Mass % | 1.35 ± 0.2 | Kjeldahl method—AOAC 979.09 [41] |
Fats (db) b | Mass % | 0.71 ± 0.1 | Soxhlet method—AOAC 963.15 [41] |
Carbohydrates (db) b | Mass % | 10.36 ± 0.3 | Miller method [32] |
Fiber (db) b | Mass % | 2.7 × 10−2 ± 0.2 | Gravimetric method—AOAC 920.169 [41] |
Ashes (db) b | Mass % | 0.65 ± 0.2 | Muffle method—AOAC 940.26 [41] |
Calorific value (db) b | kcal/kg | 2232.33 ± 0.2 | DIN Serie 51.900 Standard [42] |
Density, 20 °C (wb) a | kg m−3 | 1043.17 ± 0.3 | ASHRAE R08 2006 [43] |
Thermal conductivity, 20 °C (wb) a | W/(m∙K) | 0.57 ± 0.4 | ASHRAE R08 2006 [43] |
Thermal diffusivity, 20 °C (wb) a | m2 s−1 | 1.42 × 10−4 ± 0.1 | ASHRAE R08 2006 [43] |
Specific heat, 20 °C (wb) a | kJ/(kg∙K) | 3.84 ± 0.5 | ASHRAE R08 2006 [43] |
Soluble solids (juice) (wb) a | ° Brix | 11.78 ± 0.2 | Refractometer method—AOAC 932.12 [41] |
pH (juice) (wb) a | Dimensionless | 3.80 ± 0.1 |
° Brix | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Control Sample | 0.02 g/L | 0.05 g/L | 0.10 g/L | 0.15 g/L | 0.20 g/L | 0.02 g/L | 0.05 g/L | 0.10 g/L | 0.15 g/L | 0.20 g/L |
0 | 17.00 | 11.78 ± 0.1 | 11.78 ± 0.2 | 11.78 ± 0.2 | 11.78 ± 0.2 | 11.78 ± 0.2 | 3.80 ± 0.2 | 3.80 ± 0.2 | 3.80 ± 0.1 | 3.80 ± 0.3 | 3.80 ± 0.3 |
10 | 16.00 | 11.00± 0.1 | 11.20 ± 0.2 | 11.60 ± 0.4 | 11.30 ± 0.2 | 11.10 ± 0.2 | 3.80 ± 0.2 | 3.80 ± 0.3 | 3.80 ± 0.3 | 3.80 ± 0.3 | 3.80 ± 0.2 |
20 | 15.00 | 10.00 ± 0.1 | 11.00 ± 0.4 | 11.50 ± 0.2 | 11.00 ± 0.4 | 11.00 ± 0.1 | 3.70 ± 0.3 | 3.70 ± 0.3 | 3.70 ± 0.4 | 3.70 ± 0.5 | 3.70 ± 0.3 |
30 | 14.50 | 10.00 ± 0.3 | 9.50 ± 0.5 | 11.40 ± 0.2 | 9.20 ± 0.3 | 10.00 ± 0.2 | 3.70 ± 0.2 | 3.70 ± 0.4 | 3.70 ± 0.5 | 3.70 ± 0.1 | 3.70 ± 0.4 |
40 | 14.00 | 9.50 ± 0.2 | 9.17 ± 0.6 | 11.00 ± 0.2 | 9.10 ± 0.5 | 9.00 ± 0.3 | 3.60 ± 0.1 | 3.60 ± 0.1 | 3.60 ± 0.3 | 3.6 0± 0.2 | 3.60 ± 0.6 |
50 | 5.00 | 6.15 ± 0.3 | 6.67 ± 0.3 | 8.00 ± 0.2 | 7.00 ± 0.2 | 6.00 ± 0.4 | 3.50 ± 0.2 | 3.50 ± 0.3 | 3.50 ± 0.2 | 3.50 ± 0.1 | 3.50 ± 0.3 |
60 | 4.00 | 5.77 ± 0.4 | 6.25 ± 0.2 | 7.50 ± 0.1 | 6.00 ± 0.1 | 5.70 ± 0.2 | 3.40 ± 0.5 | 3.40 ± 0.3 | 3.40 ± 0.2 | 3.40 ± 0.2 | 3.40 ± 0.2 |
70 | 3.00 | 5.38 ± 0.3 | 5.83 ± 0.3 | 7.00 ± 0.2 | 5.30 ± 0.2 | 5.30 ± 0.5 | 3.30 ± 0.2 | 3.30 ± 0.4 | 3.30 ± 0.5 | 3.30 ± 0.3 | 3.30 ± 0.1 |
80 | 2.80 | 5.00 ± 0.3 | 5.42 ± 0.2 | 6.50 ± 0.2 | 5.20 ± 0.2 | 5.10 ± 0.2 | 3.20 ± 0.2 | 3.20 ± 0.5 | 3.20 ± 0.3 | 3.20 ± 0.3 | 3.20 ± 0.2 |
90 | 2.70 | 4.62 ± 0.3 | 5.00 ± 0.5 | 6.00 ± 0.2 | 5.00 ± 0.1 | 4.80 ± 0.1 | 3.20 ± 0.1 | 3.20 ± 0.3 | 3.20 ± 0.2 | 3.20 ± 0.3 | 3.20 ± 0.3 |
100 | 2.50 | 3.85 ± 0.2 | 4.17 ± 0.3 | 5.00 ± 0.1 | 4.30 ± 0.3 | 4.00 ± 0.2 | 3.10 ± 0.2 | 3.10 ± 0.1 | 3.10 ± 0.2 | 3.10 ± 0.2 | 3.10 ± 0.3 |
110 | 2.00 | 3.08 ± 0.3 | 3.33 ± 0.1 | 4.00 ± 0.1 | 3.80 ± 0.4 | 3.70 ± 0.3 | 3.00 ± 0.3 | 3.00 ± 0.2 | 3.00 ± 0.3 | 3.00 ± 0.3 | 3.00 ± 0.4 |
120 | 2.00 | 2.31 ± 0.3 | 2.50 ± 0.4 | 3.00 ± 0.3 | 3.50 ± 0.2 | 3.20 ± 0.2 | 3.00 ± 0.3 | 3.00 ± 0.2 | 3.00 ± 0.2 | 3.00 ± 0.2 | 3.00 ± 0.3 |
130 | 2.00 | 2.10 ± 0.1 | 2.08 ± 0.2 | 2.50 ± 0.4 | 2.00 ± 0.2 | 2.30 ± 0.2 | 2.90 ± 0.4 | 2.90 ± 0.3 | 2.90 ± 0.1 | 2.90 ± 0.1 | 2.90 ± 0.2 |
140 | 2.00 | 2.00 ± 0.1 | 2.00 ± 0.1 | 2.00 ± 0.2 | 2.00 ± 0.1 | 2.00 ± 0.1 | 2.80 ± 0.3 | 2.80 ± 0.2 | 2.80 ± 0.2 | 2.80 ± 0.2 | 2.80 ± 0.5 |
150 | 2.00 | 2.00 ± 0.3 | 2.00 ± 0.4 | 2.00 ± 0.2 | 2.00 ± 0.1 | 2.00 ± 0.1 | 2.80 ± 0.3 | 2.80 ± 0.3 | 2.80 ± 0.1 | 2.80 ± 0.1 | 2.80 ± 0.3 |
160 | 2.00 | 2.00 ± 0.2 | 2.00 ± 0.4 | 2.00 ± 0.3 | 2.00 ± 0.2 | 2.00 ± 0.2 | 2.80 ± 0.1 | 2.80 ± 0.2 | 2.80 ± 0.3 | 2.80 ± 0.2 | 2.80 ± 0.3 |
Reference | Microorganism | Initial Sugar Content | Temperature (°C) | Rpm | Maximum Ethanol Concentration | Fermentation Time (h) |
---|---|---|---|---|---|---|
[21] * | Saccharomyces cerevisiae (baker’s yeast) | - | 40 | 150 | 190 g/L | 168 |
[23] * | Zymomonas mobilis and Candida tropicalis | 122 g/L | - | - | 50 g/L | - |
[2] | Harzianum harzianum, Aspergillus Sojae and Saccharomyces cerevisiae NRRL Y-139 | 16.16 g/L | 30 | 200 | 8.75 g/L | 100 |
Saccharomyces cerevisiae NRRL Y-139 | 4.46 g/L | - | ||||
[52] | Saccharomyces cerevisiae | - | 30 | 150 | 53.6 g/L | 72 |
[53] | Trichoderma harzianum, Aspergillus sojae, and Saccharomyces cerevisiae | - | - | - | 8.75 g/L | - |
[54] | Saccharomyces cerevisiae | 116.3 g/L | 30 | - | 53.1 g/L | 72 |
Kluyveromyces marxianus | - | 29.5 g/L | 72 | |||
The present study | Saccharomyces cerevisiae UCLM S 377 | 108.07 g/L | 30 | 100 | 31.30 g/L | 144 |
Analysis | Unit of Measurement | 0.02 g/L | 0.05 g/L | 0.10 g/L | 0.15 g/L | 0.20 g/L | Determination Method |
---|---|---|---|---|---|---|---|
pH | Dimensionless | 4.50 ± 0.2 | 4.50 ± 0.3 | 4.60 ± 0.2 | 4.60 ± 0.3 | 4.60 ± 0.3 | |
COD | g/L | 112.4 ± 0.2 | 111.9 ± 0.3 | 113.1 ± 0.3 | 111.7 ± 0.3 | 112.5 ± 0.2 | Hach TNT822 [59] |
BOD5 | g/L | 85.3 ± 0.1 | 84.2 ± 0.2 | 82.4 ± 0.4 | 83.4 ± 0.4 | 83.8 ± 0.1 | Hach standard method [60] |
Nitrogen | g/L | 1.91 ± 0.2 | 1.94 ± 0.3 | 1.98 ± 0.2 | 1.96 ± 0.1 | 1.95 ± 0.3 | Kjeldahl method—AOAC 979.09 [41] |
Raw proteins | g/L | 8.21 ± 0.3 | 8.23 ± 0.4 | 8.23 ± 0.4 | 8.24 ± 0.1 | 8.24 ± 0.1 | Kjeldahl method—AOAC 979.09 [41] |
Ashes | g/L | 19.54 ± 0.3 | 19.54 ± 0.5 | 19.76 ± 0.2 | 19.54 ± 0.4 | 19.78 ± 0.5 | Muffle method—AOAC 940.26 [41] |
Total solids | % | 60.31 ± 0.5 | 60.32 ± 0.3 | 60.31 ± 0.6 | 60.32 ± 0.6 | 60.32 ± 0.2 | Mehod 2540 D—APHA 2005 [61] |
Organic matter | g/L | 48.43 ± 0.6 | 48.44 ± 0.5 | 48.56 ± 0.2 | 48.54 ± 0.2 | 48.36 ± 0.1 | TNT Hach TOC MR [62] |
Electrical conductivity | dS/m | 17.31 ± 0.4 | 17.41 ± 0.5 | 17.33 ± 0.3 | 17.53 ± 0.2 | 17.45 ± 0.1 | Method 2510—APHA 2005 [61] |
Density | g/mL | 0.96 ± 0.4 | 0.97 ± 0.3 | 0.98 ± 0.4 | 0.98 ± 0.5 | 0.98 ± 0.5 | ASHRAE R08 2006 [43] |
Potassium (K2O) | g/L | 4.21 ± 0.3 | 4.32 ± 0.2 | 4.42 ± 0.3 | 4.31 ± 0.5 | 4.20 ± 0.5 | The X-ray fluorescence (XRF) technique (Bruker S8 tiger, Ettlingen, Germany) |
Phosphorus (P2O5) | g/L | 0.06 ± 0.6 | 0.06 ± 0.5 | 0.07 ± 0.2 | 0.07 ± 0.2 | 0.07 ± 0.3 | The X-ray fluorescence (XRF) technique (Bruker S8 tiger, Ettlingen, Germany) |
Calcium (CaO) | g/L | 1.40 ± 0.2 | 1.41 ± 0.6 | 1.43 ± 0.2 | 1.42 ± 0.6 | 1.43 ± 0.2 | The X-ray fluorescence (XRF) technique (Bruker S8 tiger, Ettlingen, Germany) |
Manganese (MnO) | g/L | 0.21 ± 0.4 | 0.23 ± 0.3 | 0.23 ± 0.5 | 0.25 ± 0.1 | 0.26 ± 0.4 | The X-ray fluorescence (XRF) technique (Bruker S8 tiger, Ettlingen, Germany) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, D.; Rebolledo-Leiva, R.; Fernández-Puratich, H.; Quinteros-Lama, H.; Cataldo, F.; Muñoz, E.; Tenreiro, C. Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile. Fermentation 2021, 7, 203. https://doi.org/10.3390/fermentation7040203
Hernández D, Rebolledo-Leiva R, Fernández-Puratich H, Quinteros-Lama H, Cataldo F, Muñoz E, Tenreiro C. Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile. Fermentation. 2021; 7(4):203. https://doi.org/10.3390/fermentation7040203
Chicago/Turabian StyleHernández, Diógenes, Ricardo Rebolledo-Leiva, Harald Fernández-Puratich, Héctor Quinteros-Lama, Fernando Cataldo, Edmundo Muñoz, and Claudio Tenreiro. 2021. "Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile" Fermentation 7, no. 4: 203. https://doi.org/10.3390/fermentation7040203
APA StyleHernández, D., Rebolledo-Leiva, R., Fernández-Puratich, H., Quinteros-Lama, H., Cataldo, F., Muñoz, E., & Tenreiro, C. (2021). Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile. Fermentation, 7(4), 203. https://doi.org/10.3390/fermentation7040203